The Annals of Probability 2002, Vol. 30, No. 4, 2108–2112

CORRECTION

GROWTH PROFILE AND INVARIANT MEASURES FOR THE WEAKLY SUPERCRITICAL CONTACT PROCESS ON A HOMOGENEOUS TREE

BY STEVEN P. LALLEY

Annals of Probability (1999) 27 206-225

The proof of Theorem 3 in [1] is incorrect, as it relies on a faulty use of the strong Markov property. The theorem asserts that $\beta = \beta(\lambda)$ is strictly increasing in λ for $\lambda < \lambda_2$, where λ is the infection rate parameter for the contact process, λ_2 is the upper critical value (at the transition from weak to strong survival), and $\beta = \lim_{n \to \infty} u_n^{1/n}$ where u_n = probability that a vertex x_n at distance *n* from the root is ever infected, given that only the root is infected at time t = 0. In this note we shall prove the following slightly weaker result.

THEOREM 3'. If $\beta(\lambda) < 1/\sqrt{d}$ and $\lambda_* < \lambda$ then $\beta(\lambda_*) < \beta(\lambda)$.

This leaves open the possibility that $\beta(\lambda) = 1/\sqrt{d}$ on an interval $[\lambda_3, \lambda_2]$ of positive length. The proof of Theorem 3' below relies on the following estimate proved by Schonmann (Theorem 2) in [4]: If $\beta(\lambda) < 1/\sqrt{d}$ then for some constant $0 < C < \infty$ and every integer $n \ge 1$,

(0.1)
$$\frac{\beta(\lambda)^n}{Cn} \le u_n.$$

Schonmann's argument makes essential use of the fact, proved in [1], that $\beta < 1/\sqrt{d}$ implies $\eta < 1$, where $\eta = \lim_{t \to \infty} P\{\text{root} \in A_t\}^{1/t}$.

The proof of Theorem 3' also uses the following elementary results.

LEMMA 1. Let $X, X_1, X_2, ...$ be independent, identically distributed, positive integer-valued random variables, and let N be a geometrically distributed random variable independent of the random variables $X_1, X_2, ...$ Suppose that the probability generating function $\varphi(z) := Ez^X$ is finite for $1 \le z < R$ and infinite at z = R. Then

(0.2)
$$\limsup_{n \to \infty} P\left\{\sum_{i=1}^{N} X_i > n\right\}^{1/n} > 1/R.$$

Received October 2001; revised December 2001.