PERIODIC CONSTANT MEAN CURVATURE SURFACES IN $\mathbb{H}^{2} \times \mathbb{R}^{*}$

LAURENT MAZET ${ }^{\dagger}$, M. MAGDALENA RODRÍGUEZ \ddagger, AND HAROLD ROSENBERG ${ }^{\S}$

Key words. Constant mean curvature surfaces, minimal surfaces, periodic surfaces, Alexandrov problem, Alexandrov reflection technique.

AMS subject classifications. Primary 53A10; Secondary 49Q05, 53C42, 53C30.

1. Introduction. A properly embedded surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$, invariant by a non-trivial discrete group of isometries of $\mathbb{H}^{2} \times \mathbb{R}$, will be called a periodic surface. We will discuss periodic minimal and constant mean curvature surfaces. At this time, there is little theory of these surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ and other homogeneous 3-manifolds, with the exception of the space forms.

The theory of doubly periodic minimal surfaces (invariant by a \mathbb{Z}^{2} group of isometries) in \mathbb{R}^{3} is well developed. Such a surface in \mathbb{R}^{3}, not a plane, is given by a properly embedded minimal surface in $\mathbb{T} \times \mathbb{R}, \mathbb{T}$ some flat 2 -torus. One main theorem is that a finite topology complete embedded minimal surface in $\mathbb{T} \times \mathbb{R}$ has finite total curvature and one knows the geometry of the ends [11]. It is very interesting to understand this for such minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}, \mathbb{M}^{2}$ a closed hyperbolic surface.

In this paper we will consider periodic surfaces in $\mathbb{H}^{2} \times \mathbb{R}$. The discrete groups G of isometries of $\mathbb{H}^{2} \times \mathbb{R}$ we consider are generated by horizontal translations ϕ_{l} along geodesics γ of \mathbb{H}^{2} and/or a vertical translation $T(h)$ by some $h>0$. We denote by \mathbb{M} the quotient of $\mathbb{H}^{2} \times \mathbb{R}$ by G.

In the case G is the \mathbb{Z}^{2} subgroup of the isometry group generated by ϕ_{l} and $T(h), \mathbb{M}$ is diffeomorphic but not isometric to $\mathbb{T} \times \mathbb{R}$. Moreover \mathbb{M} is foliated by the family of tori $\mathbb{T}(s)=(d(s) \times \mathbb{R}) / G$ (here $d(s)$ is an equidistant to γ). All the $\mathbb{T}(s)$ are intrinsically flat and have constant mean curvature; $\mathbb{T}(0)$ is totally geodesic. In Section 3, we will prove an Alexandrov-type theorem for doubly periodic H-surfaces, i.e., an analysis of compact embedded constant mean curvature surfaces in such a \mathbb{M} (Theorem 3.1).

The remainder of the paper is devoted to construct examples of periodic minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}$.

The first example we want to illustrate is the singly periodic Scherk minimal surface. In \mathbb{R}^{3}, it can be understood as the desingularization of two orthogonal planes. H. Karcher [5] has generalized this to desingularize k planes of \mathbb{R}^{3} meeting along a line at equal angles, these are called Saddle Towers. In $\mathbb{H}^{2} \times \mathbb{R}$, two situations are similar to these examples: the intersection of a vertical plane with the horizontal slice $\mathbb{H}^{2} \times\{0\}$ and the intersection of k vertical planes meeting along a vertical geodesic at equal angles. These surfaces, constructed in Section 4, are singly periodic and called,

[^0]
[^0]: *Received July 17, 2012; accepted for publication July 19, 2013. Research partially supported by the Spanish MCyT-Feder research project MTM2011-22547, the Regional J. Andalucía Grant no. P09-FQM-5088 and the CEI BioTIC GENIL project (CEB09-0010) no. PYR-2010-21.
 †Université Paris-Est, Laboratoire d'Analyse et Mathématiques Appliquées, UMR 8050, UFR de Sciences et technologies, Département de Mathématiques, 61 avenue du général de Gaulle 94010 Créteil cedex, France (laurent.mazet@univ-paris12.fr).
 \ddagger Universidad de Granada, Departamento de Geometría y Topología, Campus de Fuentenueva, s/n 18071 Granada, Spain (magdarp@ugr.es).
 §Instituto de Matematica Pura y Aplicada, 110 Estrada Dona Castorina, 22460-320 Rio de Janeiro, Brazil (hrosen@free.fr).

