EIGENVALUES OF HECKE OPERATORS ON HILBERT MODULAR GROUPS*

ROELOF W. BRUGGEMAN^{\dagger} AND ROBERTO J. MIATELLO^{\ddagger}

Abstract. Let *F* be a totally real field, let *I* be a nonzero ideal of the ring of integers \mathcal{O}_F of *F*, let $\Gamma_0(I)$ be the congruence subgroup of Hecke type of $G = \prod_{j=1}^d \operatorname{SL}_2(\mathbb{R})$ embedded diagonally in *G*, and let χ be a character of $\Gamma_0(I)$ of the form $\chi \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \chi(d)$, where $d \mapsto \chi(d)$ is a character of \mathcal{O}_F modulo *I*.

For a finite subset P of prime ideals \mathfrak{p} not dividing I, we consider the ring \mathcal{H}^I , generated by the Hecke operators $T(\mathfrak{p}^2)$, $\mathfrak{p} \in P$ (see §3.2) acting on (Γ, χ) -automorphic forms on G.

Given the cuspidal space $L_{\xi}^{2,\operatorname{cusp}}(\Gamma_0(I)\backslash G,\chi)$, we let V_{ϖ} run through an orthogonal system of irreducible *G*-invariant subspaces so that each V_{ϖ} is invariant under \mathcal{H}^I . For each $1 \leq j \leq d$, let $\lambda_{\varpi} = (\lambda_{\varpi,j})$ be the vector formed by the eigenvalues of the Casimir operators of the *d* factors of *G* on V_{ϖ} , and for each $\mathfrak{p} \in P$, we take $\lambda_{\varpi,\mathfrak{p}} \in \mathcal{J}_{\mathfrak{p}} := [0, 1 + N(\mathfrak{p})) \cup i(0, \sqrt{1 + N(\mathfrak{p})^2}])$ so that $\lambda_{\varpi,\mathfrak{p}}^2 - N(\mathfrak{p})$ is the eigenvalue on V_{ϖ} of the Hecke operator $T(\mathfrak{p}^2)$. If for some prime \mathfrak{p} the Hecke operator $T(\mathfrak{p})$ can be defined then its eigenvalue on V_{ϖ} is real and equal to $\lambda_{\varpi,\mathfrak{p}}$ or $-\lambda_{\varpi,\mathfrak{p}}$.

For each family of expanding boxes $t \mapsto \Omega_t$, as in (3) in \mathbb{R}^d , and fixed interval $J_{\mathfrak{p}}$ in $\mathcal{J}_{\mathfrak{p}}$, for each $\mathfrak{p} \in P$, we consider the counting function

$$N(\Omega_t; (J_{\mathfrak{p}})_{\mathfrak{p}\in P}) := \sum_{\varpi, \lambda_{\varpi}\in \Omega_t : \lambda_{\varpi}, \mathfrak{p}\in J_{\mathfrak{p}}, \forall \mathfrak{p}\in P} |c^r(\varpi)|^2$$

Here $c^r(\varpi)$ denotes the normalized Fourier coefficient of order r at ∞ for the elements of V_{ϖ} , with $r \in \mathcal{O}'_F \smallsetminus \mathfrak{p} \mathcal{O}'_F$ for every $\mathfrak{p} \in P$.

In the main result in this paper, Theorem 1.1, we give, under some mild conditions on the Ω_t , the asymptotic distribution of the function $N(\Omega_t; (J_{\mathfrak{p}})_{\mathfrak{p}\in P})$, as $t \to \infty$. We show that at the finite places outside I the eigenvalues of the Hecke operator $T(\mathfrak{p}^2)$ are equidistributed compatibly with the Sato-Tate measure, whereas at the archimedean places the eigenvalues λ_{ϖ} are equidistributed with respect to the Plancherel measure.

As a consequence, if we pick an infinite place l and we prescribe $\lambda_{\varpi,j} \in \Omega_j$ for all infinite places $j \neq l$ and $\lambda_{\varpi,\mathfrak{p}} \in J_\mathfrak{p}$ for all finite places \mathfrak{p} in P for fixed sets Ω_j and fixed intervals $J_\mathfrak{p} \subset \mathcal{J}_\mathfrak{p}$ with positive measure and then allow $\lambda_{\varpi,l}$ to run over larger and larger regions, then there are infinitely many representations ϖ in such a set, and their positive density is as described in Theorem 1.1.

Key words. Automorphic representations, Hecke operators, Hilbert modular group, Plancherel measure, Sato-Tate measure.

AMS subject classifications. 11F41, 11F60, 11F72, 22E30.

1. Introduction and discussion of main results. We work with a totally real number field F of degree d, the Lie group $G = \operatorname{SL}_2(\mathbb{R})^d$ considered as the product of $\operatorname{SL}_2(F_j)$ for all archimedean completions $F_j \cong \mathbb{R}$ of F. The group $\operatorname{SL}_2(F)$ is diagonally embedded in G. We consider the congruence subgroup $\Gamma = \Gamma_0(I)$ with I a nonzero ideal in the ring of integers $\mathcal{O}_F = \mathcal{O}$ of F, a character χ of $(\mathcal{O}_F/I)^*$ inducing a character $\chi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \chi(d)$ of Γ , and a compatible central character determined by $\xi \in \{0,1\}^d$.

 $L^2_{\xi}(\Gamma \setminus G, \chi)$ is the Hilbert space of classes of square integrable functions transforming on the left by Γ according to the character χ , and transforming by the center Z of G according to the central character determined by ξ . We work with a maximal

^{*}Received June 18, 2010; accepted for publication July 3, 2012.

 $^{^\}dagger Department$ of Mathematics, Utrecht University, 3508 TC Utrecht, The Netherlands (r.w. bruggeman@uu.nl).

 $^{^{\}ddagger}{\rm FaMAF},$ Universidad Nacional de Córdoba, 5000 Córdoba, Argentina (miatello@famaf.unc. edu.ar).