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Abstract. We define a family of Coleman maps for positive crystalline p-adic representations of
the absolute Galois group of Qp using the theory of Wach modules. Let f =

∑
anq

n be a normalized
new eigenform and p an odd prime at which f is either good ordinary or supersingular. By applying
our theory to the p-adic representation associated to f , we define Coleman maps Coli for i = 1, 2

with values in Qp ⊗Zp Λ, where Λ is the Iwasawa algebra of Z×
p . Applying these maps to the Kato

zeta elements gives a decomposition of the (generally unbounded) p-adic L-functions of f into linear
combinations of two power series of bounded coefficients, generalizing works of Pollack (in the case
ap = 0) and Sprung (when f corresponds to a supersingular elliptic curve). Using ideas of Kobayashi
for elliptic curves which are supersingular at p, we associate to each of these power series a Λ-cotorsion
Selmer group. This allows us to formulate a “main conjecture”. Under some technical conditions,
we prove one inclusion of the “main conjecture” and show that the reverse inclusion is equivalent to
Kato’s main conjecture.
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1. Introduction.

1.1. Background. Let E be an elliptic curve defined over Q which has good
ordinary reduction at the prime p. In [MSD74], Mazur and Swinnerton-Dyer con-
structed a p-adic L-function, L̃p,E , which interpolates complex L-values of E. Let

Q∞ = Q(µp∞). If G∞ denotes the Galois group of Q∞ over Q, then L̃p,E is an ele-

ment of ΛQp(G∞) = Q ⊗ Zp[[G∞]]. It is conjectured that L̃p,E is in fact an element
of the Iwasawa algebra Λ(G∞) = Zp[[G∞]].

Recall that the p-Selmer group of E over any finite extension F of Q is defined as

Selp(E/F ) = ker

(

H1(F,Ep∞) -

∏

v

H1(Fv, Ep∞)

E(Fv)⊗Qp/Zp

)

,

where the product is taken over all places of F . If we let Selp(E/Q∞) =
lim
−→n

Selp(E/Q(µpn)), then Selp(E/Q∞) is equipped with an action of G∞ which
extends to an action of the Iwasawa algebra. It is not difficult to show that the
Pontryagin dual Selp(E/Q∞)∨ is finitely generated over Λ(G∞), and a theorem of
Kato-Rohrlich (conjectured by Mazur) states that it is in fact Λ(G∞)-torsion. We
can therefore associate to it a characteristic ideal for each ∆-isotypical component,
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