BOUNDARY VALUE PROBLEMS FOR HOLOMORPHIC FUNCTIONS ON THE UPPER HALF-PLANE*

MIRAN ČERNE[†] AND MANUEL FLORES[‡]

Abstract. Let $\Pi \subseteq \mathbb{C}$ be the open upper half-plane and let $\{\gamma_z\}_{z\in\partial\Pi}$ be a smooth family of smooth Jordan curves in the complex plane \mathbb{C} parametrized by the boundary of Π . Then there exists a smooth up to the boundary holomorphic function f on Π such that $f(z) \in \gamma_z$ for every $z \in \partial \Pi$. Similar result is also proved on an arbitrary bordered Riemann surface.

Key words. Boundary value problem, Riemann-Hilbert problem

AMS subject classifications. Primary 30E25, 35Q15

1. Introduction. Let $\Pi = \{z \in \mathbb{C}; \operatorname{Im}(z) > 0\}$ be the open upper half-plane and let $\{\gamma_z\}_{z \in \partial \Pi}$ be a smooth family of smooth Jordan curves in the complex plane parametrized by the boundary $\partial \Pi$ of Π , that is, there exists a function $\rho \in C^{\infty}(\partial \Pi \times \mathbb{C})$ such that

$$\gamma_z = \{ w \in \mathbb{C}; \rho(z, w) = 0 \}$$

and $\overline{\partial}_w \rho(z, w) \neq 0$ for every $z \in \partial \Pi$ and $w \in \gamma_z$. We are interested in the existence of solutions of the corresponding Riemann-Hilbert problem and we show the following theorem.

THEOREM 1.1. Let $\{\gamma_z\}_{z \in \partial \Pi}$ be a smooth family of smooth Jordan curves in \mathbb{C} . Then there exists a smooth up to the boundary holomorphic function f on Π such that $f(z) \in \gamma_z$ for every $z \in \partial \Pi$.

Using conformal equivalence between the open upper half-plane Π and the open unit disc Δ one gets the following equivalent statement.

THEOREM 1.2. Let $\{\gamma_z\}_{z\in\partial\Delta\setminus\{1\}}$ be a smooth family of smooth Jordan curves in \mathbb{C} . Then there exists a smooth function f on $\overline{\Delta}\setminus\{1\}$, holomorphic on Δ , such that $f(z)\in\gamma_z$ for every $z\in\partial\Delta\setminus\{1\}$.

Let $\{\gamma_z\}_{z\in\partial\Delta}$ be a smooth family of smooth Jordan curves in \mathbb{C} parametrized by the **whole** boundary $\partial\Delta$ of Δ . By Theorem 1.2 there are no obstructions to the existence of a solution of the Riemann-Hilbert problem on the disc for the family of Jordan curves $\{\gamma_z\}_{z\in\partial\Delta}$ if we allow solutions to be "wild" at only one boundary point. On the other hand the existence of a smooth up to the boundary holomorphic function f on Δ such that $f(z) \in \gamma_z$ for **every** $z \in \partial\Delta$ is not always guaranteed. For example one can take

$$\rho(z,w) = |w - \overline{z}|^2 - r^2,$$

^{*}Received August 28, 2006; accepted for publication September 8, 2006.

[†]Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia (miran.cerne@fmf.uni-lj.si). The first author was supported in part by a grant *Analiza in geometrija* P1-0291 from the Ministry of Higher Education, Science and Technology of the Republic of Slovenia.

[‡]Department of Mathematics, University of La Laguna, 38771 La Laguna, Tenerife, Spain (mflores @ull.es). The second author was supported in part by grants from FEDER y Ministerio de Ciencia y Tecnologia number MTM 2004-05878 and Consejeria de Educacion Cultura y Deportes del Gobierno de Canarias, PI 2003/068.