BOUNDARY VALUE PROBLEMS FOR HOLOMORPHIC FUNCTIONS ON THE UPPER HALF-PLANE*

MIRAN ČERNE ${ }^{\dagger}$ AND MANUEL FLORES ${ }^{\ddagger}$

Abstract

Let $\Pi \subseteq \mathbb{C}$ be the open upper half-plane and let $\left\{\gamma_{z}\right\}_{z \in \partial \Pi}$ be a smooth family of smooth Jordan curves in the complex plane \mathbb{C} parametrized by the boundary of Π. Then there exists a smooth up to the boundary holomorphic function f on Π such that $f(z) \in \gamma_{z}$ for every $z \in \partial \Pi$. Similar result is also proved on an arbitrary bordered Riemann surface.

Key words. Boundary value problem, Riemann-Hilbert problem
AMS subject classifications. Primary 30E25, 35Q15

1. Introduction. Let $\Pi=\{z \in \mathbb{C} ; \operatorname{Im}(z)>0\}$ be the open upper half-plane and let $\left\{\gamma_{z}\right\}_{z \in \partial \Pi}$ be a smooth family of smooth Jordan curves in the complex plane parametrized by the boundary $\partial \Pi$ of Π, that is, there exists a function $\rho \in C^{\infty}(\partial \Pi \times \mathbb{C})$ such that

$$
\gamma_{z}=\{w \in \mathbb{C} ; \rho(z, w)=0\}
$$

and $\bar{\partial}_{w} \rho(z, w) \neq 0$ for every $z \in \partial \Pi$ and $w \in \gamma_{z}$. We are interested in the existence of solutions of the corresponding Riemann-Hilbert problem and we show the following theorem.

Theorem 1.1. Let $\left\{\gamma_{z}\right\}_{z \in \partial \Pi}$ be a smooth family of smooth Jordan curves in \mathbb{C}. Then there exists a smooth up to the boundary holomorphic function f on Π such that $f(z) \in \gamma_{z}$ for every $z \in \partial \Pi$.

Using conformal equivalence between the open upper half-plane Π and the open unit disc Δ one gets the following equivalent statement.

Theorem 1.2. Let $\left\{\gamma_{z}\right\}_{z \in \partial \Delta \backslash\{1\}}$ be a smooth family of smooth Jordan curves in \mathbb{C}. Then there exists a smooth function f on $\bar{\Delta} \backslash\{1\}$, holomorphic on Δ, such that $f(z) \in \gamma_{z}$ for every $z \in \partial \Delta \backslash\{1\}$.

Let $\left\{\gamma_{z}\right\}_{z \in \partial \Delta}$ be a smooth family of smooth Jordan curves in \mathbb{C} parametrized by the whole boundary $\partial \Delta$ of Δ. By Theorem 1.2 there are no obstructions to the existence of a solution of the Riemann-Hilbert problem on the disc for the family of Jordan curves $\left\{\gamma_{z}\right\}_{z \in \partial \Delta}$ if we allow solutions to be "wild" at only one boundary point. On the other hand the existence of a smooth up to the boundary holomorphic function f on Δ such that $f(z) \in \gamma_{z}$ for every $z \in \partial \Delta$ is not always guaranteed. For example one can take

$$
\rho(z, w)=|w-\bar{z}|^{2}-r^{2},
$$

[^0]
[^0]: *Received August 28, 2006; accepted for publication September 8, 2006.
 ${ }^{\dagger}$ Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia (miran.cerne@fmf.uni-lj.si). The first author was supported in part by a grant Analiza in geometrija P1-0291 from the Ministry of Higher Education, Science and Technology of the Republic of Slovenia.
 ${ }^{\ddagger}$ Department of Mathematics, University of La Laguna, 38771 La Laguna, Tenerife, Spain (mflores @ull.es). The second author was supported in part by grants from FEDER y Ministerio de Ciencia y Tecnologia number MTM 2004-05878 and Consejeria de Educacion Cultura y Deportes del Gobierno de Canarias, PI 2003/068.

