NON-UNIFORM CONTINUITY IN H^1 OF THE SOLUTION MAP OF THE CH EQUATION*

A. ALEXANDROU HIMONAS[†], GERARD MISIOŁEK[‡], AND GUSTAVO PONCE[§]

Abstract. We show that the solution map of the Camassa-Holm equation is not uniformly continuous in the initial data in the Sobolev space of order one on the torus and the real line. The proof relies on a construction of non-smooth travelling wave solutions. We also extend to all H^s an earlier result known to hold for peakons.

Key words. Solution map, uniform continity, Camassa-Holm equation, travelling waves, Sobolev spaces

AMS subject classifications. Primary: 35Q53

1. Introduction and statement of the result. We study the Cauchy problem for the nonlinearly dispersive Camassa-Holm equation

(1.1)
$$\partial_t u + u \partial_x u + (1 - \partial_x^2)^{-1} \partial_x \left(u^2 + \frac{1}{2} (\partial_x u)^2 \right) = 0,$$
$$u(0) = u_0, \qquad t \ge 0, \ x \in \mathbb{T} \text{ or } \mathbb{R}.$$

This equation appeared initially in the context of hereditary symmetries studied by Fuchssteiner and Fokas [FF]. However, it was first written explicitly as a water wave equation by Camassa and Holm [CH], who also studied its "peakon" solutions (see formula (1.2)).

In order to put our work in context it will be helpful to summarize the relevant known results concerning local well-posedness of this equation. In the periodic case the Cauchy problem (1.1) is locally well-posed in the Sobolev space $H^s(\mathbb{T})$ if s > 3/2(see for example [HM1], Danchin [D] or [Mi]), while if $1 \le s \le 3/2$ then it is locally well-posed in $H^s(\mathbb{T}) \cap \text{Lip}(\mathbb{T})$ (see DeLellis, Kappeler and Topalov [DKT]) and the solution u depends continuously on initial data u_0 in the H^s -norm. Furthermore, it is also known that the problem (1.1) is locally well-posed in $C^1(\mathbb{T})$ with solutions depending continuously on the data in the C^1 -norm (see [Mi]).

Similarly, if s > 3/2 then the non-periodic Cauchy problem (1.1) is locally wellposed in $H^{s}(\mathbb{R})$ with solutions depending continuously on initial data (see Constantin and Escher [CoE], Li and Olver [LO], Rodriguez-Blanco [R], [D] or a survey in Molinet [Mo]).

On the other hand, it was recently shown in [HM3] that for $s \ge 2$ the data-tosolution map $u_0 \to u$ of (1.1) is not uniformly continuous from any bounded set in $H^s(\mathbb{T})$ into $C([0,T], H^s(\mathbb{T}))$. Therefore, in this Sobolev range continuous dependence on the data is the best one can expect. A key step in the proof of that result was a construction of a sequence of smooth travelling wave solutions of the form u(x,t) =f(x-t) depending on two parameters ε and δ , which were related to the maximum

^{*}Received August 22, 2006; accepted for publication March 9, 2007.

 $^{^\}dagger \text{Department}$ of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA (himonas .1@nd.edu).

 $^{^{\}ddagger} \text{Department}$ of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA (gmisiole @nd.edu).

[§]Department of Mathematics, University of California, Santa Barbara, CA 93106, USA (ponce@math.ucsb.edu).