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Abstract. Let D be a bounded strongly pseudoconvex domain in a Stein manifold, and let Y

be a complex manifold. We show that many classical spaces of maps D̄ → Y which are holomorphic
in D are infinite dimensional complex manifolds which are modeled on locally convex topological
vector spaces (Banach, Hilbert or Fréchet). This holds in particular for Hölder and Sobolev spaces
of holomorphic maps.
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1. Introduction. Given complex manifolds (or complex spaces) X and Y , it is
a natural question whether the space H(X,Y ) of all holomorphic mappings X → Y
is also a complex manifold (resp. a complex space). If X is a compact complex space
without boundary then H(X,Y ) is a finite dimensional complex space which can be
identified with an open subset in the Douady space D(X ×Y ), [2, Theorem 1.5]. The
set of all holomorphic maps from a noncompact manifold in general does not admit
any particularly nice structure.

In §2 of this paper we prove the following results.

Theorem 1.1. Let D be a relatively compact strongly pseudoconvex domain in a
Stein manifold, and let Y be a complex manifold.

(i) The Hölder space Ak,α(D,Y ) = Ck,α(D̄, Y ) ∩ H(D,Y ) is a complex Banach
manifold for every k ∈ Z+ and 0 ≤ α < 1.

(ii) A∞(D,Y ) = C∞(D̄, Y ) ∩H(D,Y ) is a complex Fréchet manifold.

(iii) The Sobolev space Lk,pO (D,Y ) = Lk,p(D̄, Y ) ∩ H(D,Y ) is a complex Banach
manifold for k ∈ N, p ≥ 1 and kp > dimRD (resp. a complex Hilbert manifold
if p = 2).

If L(D,Y ) denotes any of the above manifolds of maps then the tangent space
TfL(D,Y ) at a point f ∈ L(D,Y ) is Lh(D, f

∗TY ), the space of sections of class L(D)
of the complex vector bundle h : f∗TY → D̄. If D is contractible, or if dimD = 1,
then TfL(D,Y ) ≈ L(D,Cm) with m = dimY .

The analogous conclusions hold if D̄ is a compact complex manifold with Stein
interior D and smooth strongly pseudoconvex boundary bD; according to Heunemann
[21] and Ohsawa [31] (see also Catlin [4]) such D̄ embeds as a smoothly bounded
strongly pseudoconvex domain in a Stein manifold.

The special case of Theorem 1.1 (i) with α = 0 was proved recently in [11].
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