STRUCTURE OF THE TENSOR PRODUCT SEMIGROUP*

MISHA KAPOVICH ${ }^{\dagger}$ AND JOHN J. MILLSON ${ }^{\ddagger}$

To the memory of S.S. Chern

Abstract

We study the structure of the semigroup $\operatorname{Tens}(G)$ consisting of triples of dominant weights (λ, μ, ν) of a complex reductive Lie group G such that $$
\left(V_{\lambda} \otimes V_{\mu} \otimes V_{\nu}\right)^{G} \neq 0
$$

We prove two general structural results for $\operatorname{Tens}(G)$ and compute $\operatorname{Tens}(G)$ for $G=S p(4, \mathbb{C})$ and $G=G_{2}$.

Key words. tensor products; irreducible representations
AMS subject classifications. 22E46, 20E42, 17B10

1. Introduction. Suppose that G is a complex reductive Lie group. Finitedimensional irreducible representations V_{λ} of G are parameterized by their highest weights $\lambda \in \Delta \cap L$, where Δ is the positive Weyl chamber and L is the character lattice of a maximal (split) torus in G. One of the basic questions of the representation theory is to decompose tensor products $V_{\lambda} \otimes V_{\mu}$ into sums of irreducible representations. Accordingly, we define the set

$$
\operatorname{Tens}(G):=\left\{(\lambda, \mu, \nu) \in(\Delta \cap L)^{3}:\left(V_{\lambda} \otimes V_{\mu} \otimes V_{\nu}\right)^{G} \neq 0\right\}
$$

For a simply-connected Lie group G with root system R we will write Tens (R) instead of $\operatorname{Tens}(G)$. It has been known for a long time, see for example [12, Theorem 9.8], that the set $\operatorname{Tens}(G)$ forms a semigroup with respect to addition. The goal of this paper is to provide more specific structural theorems for $\operatorname{Tens}(G)$ and to compute $\operatorname{Tens}(S p(4, \mathbb{C}))$ and $\operatorname{Tens}\left(G_{2}\right)$.

Theorem 1.1. For each complex reductive Lie group G, the set Tens (G) is a finite union of elementary subsets of L^{3}.

Here an elementary subset is a subset given by a finite system of linear inequalities (with integer coefficients) and congruences. Thus, to "describe" Tens (G) one would have to find these inequalities and congruences. The above theorem is an analogue of a theorem of C. Laskowski [17], who proved a similar statement for the structure constants of spherical Hecke rings.

Our next theorem provides a glimpse of what these inequalities and congruences might look like. In [2] and [10] the authors defined a finite-sided homogeneous polyhedral cone $\mathcal{P}(G)=D_{3}(G / K) \subset \Delta^{3}$ (where K is a maximal compact subgroup of $G)$, given by the inequalities of the form:

$$
\left\langle\varpi_{i}, w_{1} \lambda\right\rangle+\left\langle\varpi_{i}, w_{2} \mu\right\rangle+\left\langle\varpi_{i}, w_{3} \nu\right\rangle \leq 0,
$$

[^0]
[^0]: *Received July 15, 2005; accepted for publication February 14, 2006.
 ${ }^{\dagger}$ Department of Mathematics, University of California, Davis, CA 95616, USA (kapovich@ math.ucdavis.edu).
 ${ }^{\ddagger}$ Department of Mathematics, University of Maryland, College Park, MD 20742, USA (jjm@math.umd.edu).

