ON SOME PARTITIONS OF A FLAG MANIFOLD*

GEORGE LUSZTIG[†]

Dedicated to Professor Dan Papuc on his 80th birthday

Key words. Reductive group, Weyl group, flag manifold, unipotent class.

AMS subject classifications. 20G99.

Introduction. Let G be a connected reductive group over an algebraically closed field \mathbf{k} of characteristic $p \geq 0$. Let \mathbf{W} be the Weyl group of G. Let $\underline{\mathbf{W}}$ be the set of conjugacy classes in \mathbf{W} . The main purpose of this paper is to give a (partly conjectural) definition of a surjective map from $\underline{\mathbf{W}}$ to the set of unipotent classes in G (see 1.2(b)). When p=0, a map in the opposite direction was defined in [KL, 9.1] and we expect that it is a one sided inverse of the map in the present paper. The (conjectural) definition of our map is based on the study of certain subvarieties \mathcal{B}_g^w (see below) of the flag manifold \mathcal{B} of G indexed by a unipotent element $g \in G$ and an element $w \in \mathbf{W}$.

Note that **W** naturally indexes $(w \mapsto \mathcal{O}_w)$ the orbits of G acting on $\mathcal{B} \times \mathcal{B}$ by simultaneous conjugation on the two factors. For $g \in G$ we set $\mathcal{B}_g = \{B \in \mathcal{B}; g \in B\}$. The varieties \mathcal{B}_g play an important role in representation theory and their geometry has been studied extensively. More generally for $g \in G$ and $w \in \mathbf{W}$ we set

$$\mathcal{B}_{g}^{w} = \{ B \in \mathcal{B}; (B, gBg^{-1}) \in \mathcal{O}_{w} \}.$$

Note that $\mathcal{B}_g^1 = \mathcal{B}_g$ and that for fixed g, $(\mathcal{B}_g^w)_{w \in \mathbf{W}}$ form a partition of the flag manifold \mathcal{B}

For fixed w, the varieties \mathcal{B}_g^w $(g \in G)$ appear as fibres of a map to G which was introduced in [L3] as part of the definition of character sheaves. Earlier, the varieties \mathcal{B}_g^w for g regular semisimple appeared in [L1] (a precursor of [L3]) where it was shown that from their topology (for $\mathbf{k} = \mathbf{C}$) one can extract nontrivial information about the character table of the corresponding group over a finite field.

I thank David Vogan for some useful discussions.

1. The sets S_q .

1.1. We fix a prime number l invertible in \mathbf{k} . Let $g \in G$ and $w \in \mathbf{W}$. For $i, j \in \mathbf{Z}$ let $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)_j$ be the subquotient of pure weight j of the l-adic cohomology space $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)$. The centralizer Z(g) of g in G acts on \mathcal{B}_g^w by conjugation and this induces an action of the group of components $\bar{Z}(g)$ on $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)$ and on each $H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)_j$. For $z \in \bar{Z}(g)$ we set

$$\Xi_{g,z}^w = \sum_{i,j \in \mathbf{Z}} (-1)^i \mathrm{tr}(z, H_c^i(\mathcal{B}_g^w, \bar{\mathbf{Q}}_l)_j) v^j \in \mathbf{Z}[v]$$

where v is an indeterminate; the fact that this belongs to $\mathbf{Z}[v]$ and is independent of the choice of l is proved by an argument similar to that in the proof of [DL, 3.3].

^{*} Received January 26, 2010; accepted for publication October 21, 2010.

[†] Department of Mathematics, M.I.T., Cambridge, MA 02139, USA (gyuri@math.mit.edu). Supported in part by the National Science Foundation.