WACH MODULES AND IWASAWA THEORY FOR MODULAR FORMS*

ANTONIO LEI[†], DAVID LOEFFLER[‡], AND SARAH LIVIA ZERBES[§]

Dedicated to John Coates, on the occasion of his 66th birthday

Abstract. We define a family of Coleman maps for positive crystalline p-adic representations of the absolute Galois group of \mathbb{Q}_p using the theory of Wach modules. Let $f = \sum a_n q^n$ be a normalized new eigenform and p an odd prime at which f is either good ordinary or supersingular. By applying our theory to the p-adic representation associated to f, we define Coleman maps $\underline{\operatorname{Col}}_i$ for i=1,2 with values in $\overline{\mathbb{Q}}_p \otimes_{\mathbb{Z}_p} \Lambda$, where Λ is the Iwasawa algebra of \mathbb{Z}_p^{\times} . Applying these maps to the Kato zeta elements gives a decomposition of the (generally unbounded) p-adic L-functions of f into linear combinations of two power series of bounded coefficients, generalizing works of Pollack (in the case $a_p = 0$) and Sprung (when f corresponds to a supersingular elliptic curve). Using ideas of Kobayashi for elliptic curves which are supersingular at p, we associate to each of these power series a Λ -cotorsion Selmer group. This allows us to formulate a "main conjecture". Under some technical conditions, we prove one inclusion of the "main conjecture" and show that the reverse inclusion is equivalent to Kato's main conjecture.

Key words. L-function, supersingular modular form, p-adic Hodge theory, Iwasawa theory.

AMS subject classifications. 11R23,11F80,11S31,12H25

1. Introduction.

1.1. Background. Let E be an elliptic curve defined over \mathbb{Q} which has good ordinary reduction at the prime p. In [MSD74], Mazur and Swinnerton-Dyer constructed a p-adic L-function, $\tilde{L}_{p,E}$, which interpolates complex L-values of E. Let $\mathbb{Q}_{\infty} = \mathbb{Q}(\mu_{p^{\infty}})$. If G_{∞} denotes the Galois group of \mathbb{Q}_{∞} over \mathbb{Q} , then $\tilde{L}_{p,E}$ is an element of $\Lambda_{\mathbb{Q}_p}(G_{\infty}) = \mathbb{Q} \otimes \mathbb{Z}_p[[G_{\infty}]]$. It is conjectured that $\tilde{L}_{p,E}$ is in fact an element of the Iwasawa algebra $\Lambda(G_{\infty}) = \mathbb{Z}_p[[G_{\infty}]]$.

Recall that the p-Selmer group of E over any finite extension F of $\mathbb Q$ is defined as

$$\operatorname{Sel}_p(E/F) = \ker \left(H^1(F, E_{p^{\infty}}) \longrightarrow \prod_v \frac{H^1(F_v, E_{p^{\infty}})}{E(F_v) \otimes \mathbb{Q}_p/\mathbb{Z}_p} \right),$$

where the product is taken over all places of F. If we let $\operatorname{Sel}_p(E/\mathbb{Q}_{\infty}) = \varinjlim_n \operatorname{Sel}_p(E/\mathbb{Q}(\mu_{p^n}))$, then $\operatorname{Sel}_p(E/\mathbb{Q}_{\infty})$ is equipped with an action of G_{∞} which extends to an action of the Iwasawa algebra. It is not difficult to show that the Pontryagin dual $\operatorname{Sel}_p(E/\mathbb{Q}_{\infty})^{\vee}$ is finitely generated over $\Lambda(G_{\infty})$, and a theorem of Kato-Rohrlich (conjectured by Mazur) states that it is in fact $\Lambda(G_{\infty})$ -torsion. We can therefore associate to it a characteristic ideal for each Δ -isotypical component,

^{*}Received December 10, 2009; accepted for publication September 9, 2010.

 $^{^\}dagger Department$ of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, UK. Current address: School of Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia (antonio.lei@monash.edu). Supported by Trinity College Cambridge and an ARC DP1092496 grant.

[‡]Warwick Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK (d.a.loeffler@warwick.ac.uk). Supported by EPSRC Postdoctoral Fellowship EP/F04304X/1.

[§]Department of Mathematics, Harrison Building, University of Exeter, Exeter EX4 4QF, UK (s.zerbes@exeter.ac.uk). Supported by EPSRC Postdoctoral Fellowship EP/F043007/1.