THE NUMBER OF RATIONAL CURVES ON K3 SURFACES*

BAOSEN WU^{\dagger}

Abstract. Let X be a K3 surface with a primitive ample divisor H, and let $\beta = 2[H] \in H_2(X, \mathbb{Z})$. We calculate the Gromov-Witten type invariants n_β by virtue of Euler numbers of some moduli spaces of stable sheaves. Eventually, it verifies Yau-Zaslow formula in the non primitive class β .

Key words. Rational curve, K3 surface, stable sheaf, Euler number

AMS subject classifications. 14N35, 14D20

Introduction. Let X be a K3 surface with an ample divisor H, and let $C \in |H|$ be a reduced curve. By adjunction formula, the arithmetic genus of C is $g = \frac{1}{2}H^2 + 1$. Under the assumption that the homology class $[H] \in H_2(X, \mathbb{Z})$ is primitive, Yau and Zaslow [18] showed that the number of rational curves in the linear system |H| is equal to the coefficient of q^g in the series

$$\frac{q}{\Delta(q)} = \prod_{k>0} \frac{1}{(1-q^k)^{24}} = \sum_{d\geq 0} G_d q^d$$
$$= 1 + 24q + 324q^2 + 3200q^3 + 25650q^4 + 176256q^5 + \cdots$$

Here a multiplicity $e(\bar{J}C)$ is assigned to each rational curve C in the counting([1]).

In [5], Fantechi, Göttsche and van Straten gave an interpretation of the multiplicity $e(\bar{J}C)$. Let $M_{0,0}(X, [H])$ be the moduli space of genus zero stable maps $f: \mathbf{P}^1 \to X$ with $f_*([\mathbf{P}^1]) = [H] \in H_2(X, \mathbf{Z})$. $M_{0,0}(X, [H])$ is a zero dimensional scheme which is in general nonreduced. Let $\iota: C \hookrightarrow X$ be a rational curve in the class [H], and $n: \mathbf{P}^1 \to C$ its normalization. Then $f = \iota \circ n: \mathbf{P}^1 \to X$ is a closed point of $M_{0,0}(X, [H])$ and $e(\bar{J}C)$ is equal to the multiplicity of $M_{0,0}(X, [H])$ at f.

There is another formulation and generalization of Yau and Zaslow's formula by virtue of Gromov-Witten invariants. For K3 surfaces, the usual genus 0 Gromov-Witten invariants vanish. To remedy this, one can use the notion of twistor family developed by Bryan and Leung in [2] provided that β is a primitive class. In general, there is an algebraic geometric approach proposed by Jun Li [11] using virtual moduli cycles. Roughly speaking, he defines Gromov-Witten type invariants $N_g(\beta)$ on K3 surfaces by modifying the usual tangent-obstruction complex. When β is primitive, these invariants coincide with those defined by twistor family. Geometrically, $N_g(\beta)$ can be thought as Gromov-Witten invariants of a one dimensional family of K3 surfaces, which actually count curves in the original surface. For the rigorous definitions, see [2],[11].

Bryan and Leung [2] proved a formula for $N_g(\beta)$ when β is primitive. Let $n_\beta = N_0(\beta)$. Then $n_\beta = G_d$ with $d = \frac{1}{2}\beta^2 + 1$. It recovers the formula of Yau and Zaslow. For a non primitive class β , the numbers $N_g(\beta)$ are still unknown. However, there is a conjectural formula for $N_0(\beta)([11])$. Using the notation n_β , it says

$$n_{\beta} = \sum_{k} \frac{1}{k^3} G_{\frac{1}{2}(\frac{\beta}{k})^2 + 1}$$

^{*}Received February 14, 2006; accepted for publication October 19, 2006.

[†]Department of Mathematics, Stanford University, Stanford, CA 94305, USA (bwu@ math.stanford.edu).