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1. Introduction. In his celebrated work [S-98, S-02], Siu proved that the

plurigenera of any algebraic manifold are invariant in families. More precisely, let

π : X → D be a holomorphic submersion (i.e., dπ is nowhere zero) from a complex

manifold X to the unit disk D, and assume that every fiber Xt := π−1
(t) is a com-

pact projective manifold. Then for every m ∈ N, the function Pm : D → N defined by

Pm(t) := h0
(Xt,mKXt

) is constant.

Siu’s approach to the problem begins with the observation that the function Pm is

upper semi-continuous. Thus in order to prove that Pm is continuous (hence constant)

it suffices to show that given a global holomorphic section s of mKX0
, there is a family

of global holomorphic sections st of Xt, for all t in a neighborhood of 0, that varies

holomorphically with t and satisfies s0 = s.
To prove such an extension theorem, Siu establishes a generalization of the

Ohsawa-Takegoshi Extension Theorem to the setting of complex submanifolds of a

Kahler manifold having codimension 1 and cut out by a single, bounded holomor-

phic function. This theorem, which we will discuss below, requires the existence of

a singular Hermitian metric on the ambient manifold having non-negative curvature

current, with respect to which the section to be extended is L2
. Thus in the presence

of the extension theorem, the approach reduces to construction of such a metric.

The case where the fibers Xt of our holomorphic family are of general type was

treated in [S-98]. In this setting, Siu produced a single singular Hermitian metric e−κ

for KX so that every m-canonical section is L2
with respect to e−(m−1)κ

.

However, in the case where the fibers Xt of our holomorphic family are assumed

only to be algebraic, and not necessarily of general type, Siu’s proof in [S-02] does

not construct a single metric as in the case of general type. Instead, Siu constructs

for every section s of mKX0
a singular Hermitian metric for mKX of non-negative

curvature so that s is L2
with respect to this metric.

Definition. Let X → ∆ be a holomorphic family of complex manifolds and X0

the cental fiber of X . A universal canonical metric for the pair (X ,X0) is a singular

Hermitian metric e−κ for the canonical bundle KX of X such that for every global

holomorphic section s ∈ H0
(X0,mKX0

),

∫

X0

|s|2e−(m−1)κ < +∞.
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