CAUCHY INTEGRALS AND MÖBIUS GEOMETRY OF CURVES*

DAVID E. BARRETT[†] AND MICHAEL BOLT[‡]

Key words. Cauchy integral, Kerzman-Stein operator, inversive arc-length

AMS subject classifications. 30C40

Define a line bundle E over the Riemann sphere $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ by gluing together two copies of $\mathbb{C} \times \mathbb{C}$ using the transition mapping $(z, w) \mapsto (1/z, iw/z)$. Since the square of this bundle is the holomorphic cotangent bundle of $\widehat{\mathbb{C}}$ it is reasonable to use the notation $f(z)\sqrt{dz}$ for sections of E.

If f(z) is holomorphic on $R < |z| < \infty$ then $f(z) \sqrt{dz}$ extends to a holomorphic section of E over $R < |z| \le \infty$ if and only if $f(z) \to 0$ as $z \to \infty$.

A Möbius transformation $T: z \mapsto \frac{az+b}{cz+d}$ of $\widehat{\mathbb{C}}$ lifts to (a pair of) maps $E \to E$ given by $(z,w) \mapsto \left(Tz, \frac{\sqrt{ad-bc}}{cz+d}w\right)$. Note that the norm

(1)
$$||F||_{\gamma} = \sqrt{\int\limits_{\gamma} |f(z)|^2 |dz|}$$

of a section $F = f(z) \sqrt{dz}$ of E over a curve γ in $\widehat{\mathbb{C}}$ is Möbius-invariant.

Given a smooth Jordan curve $\gamma\subset\mathbb{C}$ and a section $F=f(z)\sqrt{dz}$ of E over γ then the Cauchy integral

(2)
$$\frac{1}{2\pi i} \int_{w \in \gamma} f(w) \sqrt{dw} \frac{\sqrt{dz} \sqrt{dw}}{w - z}$$

defines a pair of holomorphic sections $\mathcal{C}_{\gamma}^{\text{in}}F$ and $\mathcal{C}_{\gamma}^{\text{out}}F$ over the two components γ^{in} and γ^{out} of $\widehat{\mathbb{C}} \setminus \gamma$ with the property that F is the jump

b. v.
$$\mathcal{C}_{\gamma}^{\text{in}}F$$
 – b. v. $\mathcal{C}_{\gamma}^{\text{out}}F$

between boundary values of $\mathcal{C}_{\gamma}^{\text{in}}F$ and $\mathcal{C}_{\gamma}^{\text{out}}F$; moreover, the operators $\mathcal{C}_{\gamma}^{\text{in}}$ and $\mathcal{C}_{\gamma}^{\text{out}}$ are completely characterized by this description. (This is a restatement of the classical Plemelj formula – see for example [Hen, §14.1].)

Since the characterization of $\mathcal{C}_{\gamma}^{\text{in}}F$ and $\mathcal{C}_{\gamma}^{\text{out}}F$ given above is Möbius-invariant it follows that the operators $\mathcal{C}_{\gamma}^{\text{in}}$ and $\mathcal{C}_{\gamma}^{\text{out}}$ are Möbius-invariant. (This can also be checked by a direct computation verifying that the Cauchy kernel $\frac{1}{2\pi i}\frac{\sqrt{dz}\sqrt{dw}}{w-z}$ is Möbius-invariant.)

We also consider the following Möbius-invariant operators.

^{*}Received August 2, 2006; accepted for publication March 9, 2007.

 $^{^\}dagger \mbox{Department}$ of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA (barrett@umich.edu).

[‡]Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546-4403, USA (mdb7@calvin.edu).