EXCEPTIONAL BLOWUP SOLUTIONS TO QUASILINEAR WAVE EQUATIONS II*

SERGE ALINHAC ${ }^{\dagger}$

Abstract

Key words. Quasilinear wave equations, blowup, linearly degenerate eigenvalue, unstable solutions

AMS subject classifications. 35L40

1. Introduction. This Note is a continuation of the paper "Exceptional Blowup Solutions to Quasilinear Wave Equations" [1]. In this previous paper, we constructed, for some quasilinear wave equations, solutions blowing up at the origin like t^{-2}, which we considered to be an exceptional rate (the standard one in this context being t^{-1}, see [6]). We were encouraged by questions of the Referee (whom we thank) to investigate more precisely the stability of such solutions (an issue vaguely touched upon in [1]). It turns out that, depending on the perturbation of the Cauchy data, we can make the singularity of the solution either disappear, or go back to the generic t^{-1} case.

Since this paper is dedicated to M. S. Baouendi, we are happy to underline the similarity in spirit between previous constructions of conterexamples $[7],[8]$, and the present work : in both cases, the insight is obtained through a careful self-contained construction.
2. Notation and main result. The notation and the framework is the same as in [1]. For simplicity, we restrict our attention to $n=2$, and do not handle the 1D case (though it is straightforward). Thus the variables and dual variables are

$$
x=\left(x_{1}, x_{2}, x_{3}\right), y=x_{2}, t=x_{3}, \xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right), \eta=\xi_{2}, \tau=\xi_{3} .
$$

We consider a quasilinear wave equation with real analytic coefficients

$$
P(u)=\Sigma p_{i j}(\partial u) \partial_{i j}^{2} u=0, p_{i j}=p_{j i}, p_{3,3}=1 .
$$

We denote here

$$
\partial u=\left(\partial_{1} u, \partial_{2} u, \partial_{3} u\right), p(\partial u ; \xi)=\Sigma p_{i j}(\partial u) \xi_{i} \xi_{j} .
$$

We assume given a point $(\overline{\partial u}, \bar{\xi})$ where

$$
p(\overline{\partial u} ; \bar{\xi})=0,\left(\partial_{\tau} p\right)(\overline{\partial u} ; \bar{\xi}) \neq 0, \bar{\xi}_{1}=-1,
$$

and the frozen operator $\Sigma p_{i j}(\overline{\partial u}) \partial_{i j}^{2}$ is strictly hyperbolic with respect to t. Noting $D_{j} p=\partial_{\left(\partial_{j} u\right)} p$, we assume moreover that the given point is linearly degenerate, that is

$$
(\bar{\xi} . D) p(\overline{\partial u} ; \bar{\xi})=0 .
$$

[^0]
[^0]: *Received June 20, 2006; accepted for publication September 13, 2006.
 \dagger Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France (serge.alinhac@ math.u-psud.fr).

