EXCEPTIONAL BLOWUP SOLUTIONS TO QUASILINEAR WAVE EQUATIONS II*

SERGE ALINHAC[†]

Key words. Quasilinear wave equations, blowup, linearly degenerate eigenvalue, unstable solutions

AMS subject classifications. 35L40

1. Introduction. This Note is a continuation of the paper "Exceptional Blowup Solutions to Quasilinear Wave Equations" [1]. In this previous paper, we constructed, for some quasilinear wave equations, solutions blowing up at the origin like t^{-2} , which we considered to be an exceptional rate (the standard one in this context being t^{-1} , see [6]). We were encouraged by questions of the Referee (whom we thank) to investigate more precisely the stability of such solutions (an issue vaguely touched upon in [1]). It turns out that, depending on the perturbation of the Cauchy data, we can make the singularity of the solution either disappear, or go back to the generic t^{-1} case.

Since this paper is dedicated to M. S. Baouendi, we are happy to underline the similarity in spirit between previous constructions of conterexamples [7], [8], and the present work: in both cases, the insight is obtained through a careful self-contained construction.

2. Notation and main result. The notation and the framework is the same as in [1]. For simplicity, we restrict our attention to n = 2, and do not handle the 1D case (though it is straightforward). Thus the variables and dual variables are

$$x = (x_1, x_2, x_3), y = x_2, t = x_3, \xi = (\xi_1, \xi_2, \xi_3), \eta = \xi_2, \tau = \xi_3.$$

We consider a quasilinear wave equation with real analytic coefficients

$$P(u) = \sum p_{ij} (\partial u) \partial_{ij}^2 u = 0, p_{ij} = p_{ji}, p_{3,3} = 1.$$

We denote here

$$\partial u = (\partial_1 u, \partial_2 u, \partial_3 u), p(\partial u; \xi) = \sum p_{ij}(\partial u) \xi_i \xi_j.$$

We assume given a point $(\overline{\partial u}, \overline{\xi})$ where

$$p(\overline{\partial u}; \bar{\xi}) = 0, (\partial_{\tau} p)(\overline{\partial u}; \bar{\xi}) \neq 0, \bar{\xi}_1 = -1,$$

and the frozen operator $\Sigma p_{ij}(\overline{\partial u})\partial_{ij}^2$ is strictly hyperbolic with respect to t. Noting $D_j p = \partial_{(\partial_j u)} p$, we assume moreover that the given point is *linearly degenerate*, that is

$$(\bar{\xi}.D)p(\overline{\partial u};\bar{\xi})=0.$$

^{*}Received June 20, 2006; accepted for publication September 13, 2006.

 $^{^\}dagger \mbox{Département}$ de Mathématiques, Université Paris-Sud, 91405 Orsay, France (serge.alinhac@math.u-psud.fr).