PAIRS OF INVOLUTIONS OF GLANCING HYPERSURFACES*

PATRICK AHERN[†] AND XIANGHONG GONG^{†‡}

Dedicated to Salah M. Baouendi on the occasion of his seventieth birthday

Key words. moduli space, normal form, glancing hypersurfaces

AMS subject classifications. Primary 32B10, 32F25

1. Introduction. Let ω be the standard symplectic 2-form on \mathbb{R}^{2n} , given by

$$\omega = \sum_{j=1}^{n} d\xi_j \wedge dx_j, \quad (\xi, x) = (\xi_1, \cdots, \xi_n, x_1, \cdots, x_n) \in \mathbf{R}^{2n}.$$

Consider two real analytic hypersurfaces in $\mathbf{R}^{2n} (n \ge 2)$ defined by

$$F: f(\xi, x) = 0, \quad G: g(\xi, x) = 0,$$

where f, g are real analytic functions. F and G are said to be glancing at $p \in F \cap G$ if

$$\{f,g\}(p) = 0, \quad df \wedge dg(p) \neq 0, \\ \{f,\{f,g\}\}(p) \neq 0 \neq \{g,\{g,f\}\}(p), \end{cases}$$

in which $\{f, g\}$ is the Poisson bracket of f, g with respect to ω , defined by

$$\{f,g\} = X_f g, \quad X_f = \sum \frac{\partial f}{\partial x_j} \frac{\partial}{\partial \xi_j} - \frac{\partial f}{\partial \xi_j} \frac{\partial}{\partial x_j}.$$

A (local) map from \mathbb{R}^{2n} to \mathbb{R}^{2n} is said to be symplectic if it preserves ω . Given two pairs of hypersurfaces $\{F_j, G_j\}$ glancing at $p_j(j = 1, 2)$ respectively, they are equivalent if there exists a real analytic symplectic mapping ϕ defined near p_1 such that

$$\phi(p_1) = p_2, \quad \phi(F_1) = F_2, \quad \phi(G_1) = G_2.$$

Since we consider local equivalence only, we assume that $p_1 = p_2 = 0$.

In [5], Melrose showed that each pair of glancing smooth hypersurfaces in \mathbb{R}^{2n} $(n \ge 2)$ is equivalent to the pair

(1.1)
$$\widehat{F}: x_1 = 0, \quad \widehat{G}: \xi_2 = \xi_1^2 + x_1$$

under a (C^{∞}) smooth change of coordinates; Melrose's argument also shows that all real analytic glancing hypersurfaces are equivalent to the above normal form by formal symplectic maps. It was proved by Oshima [6] for $n \geq 3$ and by the second author [3] for $n \geq 2$ that for some pairs of real analytic glancing hypersurfaces, the normal form cannot be achieved by any convergent symplectic map.

^{*}Received August 2, 2006; accepted for publication March 9, 2007.

 $^{^\}dagger Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (ahern@math.wisc.edu; gong@math.wisc.edu).$

[‡]Research of the second author is supported in part by NSF grant DMS-0305474.