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1. Introduction. Let ω be the standard symplectic 2-form on R2n, given by

ω =

n∑

j=1

dξj ∧ dxj , (ξ, x) = (ξ1, · · · , ξn, x1, · · · , xn) ∈ R2n.

Consider two real analytic hypersurfaces in R2n(n ≥ 2) defined by

F : f(ξ, x) = 0, G : g(ξ, x) = 0,

where f, g are real analytic functions. F and G are said to be glancing at p ∈ F ∩G if

{f, g}(p) = 0, df ∧ dg (p) 6= 0,

{f, {f, g}}(p) 6= 0 6= {g, {g, f}}(p),

in which {f, g} is the Poisson bracket of f, g with respect to ω, defined by

{f, g} = Xfg, Xf =
∑ ∂f

∂xj

∂

∂ξj
−
∂f

∂ξj

∂

∂xj
.

A (local) map from R2n to R2n is said to be symplectic if it preserves ω. Given
two pairs of hypersurfaces {Fj , Gj} glancing at pj(j = 1, 2) respectively, they are
equivalent if there exists a real analytic symplectic mapping φ defined near p1 such
that

φ(p1) = p2, φ(F1) = F2, φ(G1) = G2.

Since we consider local equivalence only, we assume that p1 = p2 = 0.
In [5], Melrose showed that each pair of glancing smooth hypersurfaces in R2n(n ≥

2) is equivalent to the pair

(1.1) F̂ : x1 = 0, Ĝ : ξ2 = ξ21 + x1

under a (C∞) smooth change of coordinates; Melrose’s argument also shows that all
real analytic glancing hypersurfaces are equivalent to the above normal form by formal
symplectic maps. It was proved by Oshima [6] for n ≥ 3 and by the second author [3]
for n ≥ 2 that for some pairs of real analytic glancing hypersurfaces, the normal form
cannot be achieved by any convergent symplectic map.
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