MIRROR CONGRUENCE FOR RATIONAL POINTS ON CALABI-YAU VARIETIES*

LEI FU^\dagger and daqing wan^\ddagger

 ${\bf Key}$ words. Mirror congruence, rational points, zeta functions, Calabi-Yau varieties, crystalline cohomology

AMS subject classifications. 14J32, 14G15

0. Introduction. One of the basic problems in arithmetic mirror symmetry is to compare the number of rational points on a mirror pair of Calabi-Yau varieties. At present, no general algebraic geometric definition is known for a mirror pair. But an important class of mirror pairs comes from certain quotient construction. In this paper, we study the congruence relation for the number of rational points on a quotient mirror pair of varieties over finite fields. Our main result is the following theorem:

THEOREM 0.1. Let X_0 be a smooth projective variety over the finite field \mathbf{F}_q with q elements of characteristic p. Suppose X_0 has a smooth projective lifting X over the Witt ring $W = W(\mathbf{F}_q)$ such that the W-modules $H^r(X, \Omega^s_{X/W})$ are free. Let G be a finite group of W-automorphisms acting on the right of X. Suppose G acts trivially on $H^i(X, \mathcal{O}_X)$ for all i. Then for any natural number k, we have the congruence

$$#X_0(\mathbf{F}_{q^k}) \equiv #(X_0/G)(\mathbf{F}_{q^k}) \pmod{q^k},$$

where $\#X_0(\mathbf{F}_{q^k})$ (resp. $\#(X_0/G)(\mathbf{F}_{q^k})$) denotes the number of \mathbf{F}_{q^k} -rational points of X_0 (resp. X_0/G).

The main application of the above theorem is to Calabi-Yau varieties. This gives the following theorem announced in [W], which was the main motivation of the present paper.

THEOREM 0.2. Let X_0 be a geometrically connected smooth projective Calabi-Yau variety of dimension n over the finite field \mathbf{F}_q with q elements of characteristic p. Suppose X_0 has a smooth projective lifting X over the Witt ring $W = W(\mathbf{F}_q)$ such that the W-modules $H^r(X, \Omega^s_{X/W})$ are free. Let G be a finite group of Wautomorphisms acting on the right of X. Suppose G fixes a non-zero n-form on X. Then for any natural number k, we have the congruence

$$#X_0(\mathbf{F}_{q^k}) \equiv #(X_0/G)(\mathbf{F}_{q^k}) \pmod{q^k}.$$

Proof. If X is a Calabi-Yau scheme over W of dimension n, then $H^i(X, \mathcal{O}_X) = 0$ for $i \neq 0, n$ and G acts trivially on them. If the generic fiber of X is geometrically connected, then G acts trivially on $H^0(X, \mathcal{O}_X)$. By Serre duality, $H^n(X, \mathcal{O}_X)$ is dual to $H^0(X, \Omega^n_{X/W})$. Since X is Calabi-Yau, $\Omega^n_{X/W}$ is a trivial invertible sheaf. In order

^{*}Received March 30, 2005; accepted for publication November 2, 2005.

[†]Institute of Mathematics, Nankai University, Tianjin 300071, P. R. China (leifu@nankai.edu.cn). [‡]Department of Mathematics, University of California, Irvine, CA 92697, U.S.A. (dwan@math.uci.edu).