LOCATION OF SPECTRUM AND STABILITY OF SOLUTIONS FOR MONOTONE PARABOLIC SYSTEM

V.A. Volpert
Laboratoire d'analyse numérique, Université Lyon I, URA 740 CNRS
69622 Villeurbanne Cedex, France

A.I. Volpert

Department of Mathematics, Technion, 32000 Haifa, Israel
(Submitted by: Haim Brezis)

1. Introduction. We consider the parabolic system of equations

$$
\begin{equation*}
\frac{\partial u}{\partial t}=a \Delta u+F\left(u, x^{\prime}\right) \tag{1.1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=0, \tag{1.2}
\end{equation*}
$$

where $u=\left(u_{1}, \ldots, u_{n}\right), x=\left(x_{1}, \ldots, x_{m}\right) \in \Omega \subset R^{m}, \Omega$ is an infinite cylinder with the axis in the x_{1}-direction and with sufficiently smooth boundary $\partial \Omega$. The coordinates in the section of the cylinder are denoted by $x^{\prime}=\left(x_{2}, \ldots, x_{m}\right)$. We suppose that a is a constant diagonal matrix with positive diagonal elements and function $F=\left(F_{1}, \ldots, F_{n}\right)$ satisfies the condition

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial u_{j}} \geq 0, \quad i \neq j \tag{1.3}
\end{equation*}
$$

In this work we study local and global stability of travelling waves described by the problem (1.1), (1.2). We recall that a travelling wave solution is a solution of the form $u(x, t)=w\left(x_{1}-c t, x_{2}, \ldots, x_{m}\right)$. Here c is a constant, the wave velocity. The function $w(x)$ is a stationary solution of the problem

$$
\begin{equation*}
\frac{\partial v}{\partial t}=a \Delta v+c \frac{\partial v}{\partial x_{1}}+F\left(v, x^{\prime}\right),\left.\quad \frac{\partial v}{\partial \nu}\right|_{\partial \Omega}=0 . \tag{1.4}
\end{equation*}
$$

As is known, local stability of travelling waves is determined by the location of the spectrum of the operator obtained by linearization of the right-hand side of (1.4) about the travelling wave $w(x)$,

$$
\begin{equation*}
M u=a \Delta u+c \frac{\partial u}{\partial x_{1}}+F^{\prime}\left(w(x), x^{\prime}\right) u,\left.\quad \frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=0 \tag{1.5}
\end{equation*}
$$

Received for publication September 1996.
AMS Subject Classifications: 35J55, 35P99, 35K57.

