MAXIMAL ATTRACTOR AND INERTIAL SETS FOR A CONSERVED PHASE FIELD MODEL

D. Brochet and D. Hilhorst
Laboratoire d'Analyse Numérique, Université Paris Sud, Bâtiment 425, 91405 Orsay, France
\section*{A. Novick-Cohen}
Department of Mathematics, Technion-IIT, Haifa, Israel

(Submitted by: Roger Temam)

1. Introduction. In this paper we consider the following conserved phase field model proposed by Caginalp ([7]):

$$
P_{0} \quad\left\{\begin{array}{lc}
\tau \varphi_{t}=-\xi^{2} \Delta\left(\xi^{2} \Delta \varphi-g(\varphi)+2 u\right) & \text { in } \Omega \times \mathbb{R}^{+} \\
u_{t}+\frac{\ell}{2} \varphi_{t}=K \Delta u & \text { in } \Omega \times \mathbb{R}^{+} \\
\frac{\partial \varphi}{\partial n}=\frac{\partial \Delta \varphi}{\partial n}=\frac{\partial v}{\partial n}=0 & \text { on } \partial \Omega \times \mathbb{R}^{+} \\
\varphi(x, 0)=\varphi_{0}(x), u(x, 0)=u_{0}(x) & x \in \Omega
\end{array}\right.
$$

where Ω is an open bounded set in $\mathbb{R}^{n}, n=1,2,3$, with smooth boundary $\partial \Omega$. Here $g=G^{\prime}$, where G is a double well potential for which $g(s)=\frac{1}{2}\left(s^{3}-s\right)$ and the unknown functions u and φ denote respectively the temperature and the order parameter or phase field. The dimensionless temperature u is scaled so that $u=0$ corresponds to the standard planar equilibrium melting temperature and φ is scaled so that φ near 1 corresponds to the liquid phase and φ near -1 corresponds to the solid phase. The interface between liquid and solid described by the phase field model has finite width and contains all points where φ vanishes. In fact, Problem P_{0} can be viewed as an approximating problem for the Stefan problem with surface tension $([6,7])$.

The positive constants ℓ and K represent the dimensionless latent heat and the diffusivity respectivly. The positive constants τ and ξ represent a relaxation time and a correlation length.

Problem P_{0} can be viewed as a conserved version of the standard second-order phase field equations. In the second-order version the internal energy $e=\int_{\Omega}\left(u+\frac{\ell}{2} \varphi\right)$ is conserved. In the fourth-order version both the internal energy e and the "total mass" $M=\int_{\Omega} \varphi$ are conserved quantities. For the sake of generality we assume in this paper that the function g has the slightly more general form

$$
g(s)=\sum_{j=0}^{2 p-1} a_{j} s^{j} \quad \text { with } \quad a_{2 p-1}>0, p \geq 2 \text { if } n=1,2 \text { and } p=2 \text { if } n=3 .
$$

Received for publication February 1995.
AMS Subject Classifications: 35G25, 35K22, 35K45.

