Volume 3, Number 4, July 1998, pp. 497-532.

BLOW UP OF CRITICAL AND SUBCRITICAL NORMS IN SEMILINEAR HEAT EQUATIONS

Júlia Matos

Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie 4, place Jussieu, 75252 Paris Cedex 05, France

(Submitted by: Haim Brezis)

1. Introduction. We consider the semilinear heat equation

$$u_t - \Delta u = |u|^{p-1}u, \quad x \in \Omega, \ t \in [0, T],$$

$$u(t, x) = 0, \quad x \in \partial\Omega, \ t \in [0, T],$$

$$u(0, x) = u_0(x), \quad x \in \Omega,$$

(1)

with p > 1 and $u_0 \in L^{\infty}(\Omega)$, where Ω is a smooth, bounded domain in \mathbb{R}^N or $\Omega = \mathbb{R}^N$.

Let $u \in C((0,T_m) \times \overline{\Omega})$ be a solution of (1) which blows up in finite time, i.e., u is defined on the maximal interval of time $[0,T_m)$, with $T_m < +\infty$. By the blow up alternative, we know that u blows up in $L^{\infty}(\Omega)$, i.e., $\lim_{t\uparrow T_m} \|u(t)\|_{L^{\infty}(\Omega)} = +\infty$. A classical problem is to determine whether $\|u(t)\|_{L^q(\Omega)}$ also blows up as $t\uparrow T_m$, for some $q < +\infty$, and if so, at what rate.

We first note that the value $q = \frac{N(p-1)}{2}$ plays a critical role as in the problem of local existence for (1) with $u_0 \in L^q(\Omega)$. The case where q is supercritical, i.e., $q > \frac{N(p-1)}{2}$, is essentially known. Indeed,

$$\lim_{t\uparrow T_m} \|u(t)\|_{L^q(\Omega)} = +\infty,$$

for all $\frac{N(p-1)}{2} < q \le +\infty, q \ge 1$. Moreover,

$$\liminf_{t \uparrow T_m} (T_m - t)^{\delta} \| u(t) \|_{L^q(\Omega)} > 0,$$
(2)

Received for publication July 1997.

AMS Subject Classifications: 35B40, 35K55.