Advances in Differential Equations

LOCAL EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR NONLINEAR PARABOLIC EQUATIONS WITH SUPERLINEAR GROWTH AND UNBOUNDED INITIAL DATA

Alessio Porretta

Dipartimento di Matematica, Università di Roma II via della Ricerca Scientifica, 00133 Roma, Italy

(Submitted by: J.L. Vazquez)

1. Introduction. A wide, and nowadays classical, literature has dealt with the Cauchy–Dirichlet problem for the superlinear heat equation:

$$\begin{cases} u_t - \Delta u = |u|^{p-1} u & \text{in } \Omega \times (0, T), \\ u = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x) & \text{in } \Omega, \end{cases}$$
(1.1)

where Ω is an open, bounded subset of \mathbf{R}^N , p > 1 and u_0 belongs to a Lebesgue space $L^q(\Omega)$ for some $q \geq 1$. Well–known examples show that a global (in time) solution of (1.1) can not in general be expected, so problem (1.1) needs to be formulated inside a maximal interval $(0, T_{\max})$, where T_{\max} depends on u_0 . Since the works by F. B. Weissler ([10] and [11]), several authors have investigated different features of this problem under the assumption that u_0 only belongs to $L^q(\Omega)$, with $q < +\infty$ (see [6], [9], [2], [4]), obtaining existence, uniqueness and continuous-dependence results for (1.1) always in the framework of linear semigroup theory and for the so–called mild, or integral, solutions, namely if u satisfies

$$u(t) = T_t u_0 + \int_0^t T_{t-s} |u(s)|^{p-1} u(s) \, ds \,, \tag{1.2}$$

where T_t denotes the heat semigroup. A condition is required in the link between q and p in order to have existence, that is either $q > \frac{N(p-1)}{2}$ and

Received for publication December 1999.

AMS Subject Classifications: 35K55, 35K10.