Advances in Differential Equations

Volume 6, Number 7, July 2001, Pages 821-846

ASYMPTOTIC BEHAVIOUR OF A NONLINEAR ELLIPTIC EQUATION WITH CRITICAL SOBOLEV EXPONENT: THE RADIAL CASE

FRÉDÉRIC ROBERT

Université de Cergy-Pontoise, Département de Mathématiques, Site Saint-Martin 2, Avenue Adolphe Chauvin, F 95302 Cergy-Pontoise Cedex, France

(Submitted by: L.A. Peletier)

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let B be the unit ball in \mathbb{R}^N , $N \geq 3$, and $a, f : \mathbb{R} \to \mathbb{R}$ two smooth functions. We regard $x \mapsto a(|x|)$ and $x \mapsto f(|x|)$ as functions of the variable $x \in \mathbb{R}^N$. As is easily seen, these functions are locally Lipschitz. In particular, they are locally in $C^{0,\alpha}$ for all $\alpha \in (0,1)$. In order to fix ideas, we suppose that f > 0 and that f(0) = 1. Then we consider the following problem:

(I)
$$\begin{cases} \Delta u + a(|x|)u = N(N-2)f(|x|)u^p \text{ in } B\\ u > 0 \text{ in } B, \ u = 0 \text{ on } \partial B, \end{cases}$$

where $\Delta = -\sum \frac{\partial^2}{\partial x_i^2}$ is the Laplacian with the minus sign convention, and $p = \frac{N+2}{N-2}$ is critical from the viewpoint of Sobolev embeddings. We let $H_0^1(B)$ be the standard Sobolev space, defined as the completion of $\mathcal{D}(B)$, the set of smooth functions with compact support in B, with respect to the norm $||u|| = \sqrt{\int_B |\nabla u|^2 dx}$. In the sequel, we suppose that the operator $u \mapsto \Delta u + a(|x|)$ is coercive on $H_0^1(B)$. This is the case when $a > -\lambda_1$, where λ_1 is the first eigenvalue of Δ for the Dirichlet problem.

Situations where (I) does not have a solution are in Pohozaev [14]. In particular, (I) does not possess a solution if $a \equiv 0$ and $f \equiv 1$. However, as it is subcritical from the viewpoint of Sobolev embeddings, the problem

$$(I_{\epsilon}) \begin{cases} \Delta u_{\epsilon} + a(|x|)u_{\epsilon} = N(N-2)f(|x|)u_{\epsilon}^{p-\epsilon} \text{ in } B\\ u_{\epsilon} > 0 \text{ in } B, \ u_{\epsilon} = 0 \text{ on } \partial B \end{cases}$$

Accepted for publication July 2000.

AMS Subject Classifications: 35J20, 35J60.