Advances in Differential Equations

Volume 5 (1-3) January-March 2000, pp. 269-292

THE POROUS MEDIA EQUATION WITH NONCONSTANT COEFFICIENTS

M. Bertsch

Dipartimento di Matematica, Università di Roma "Tor Vergata" Via della Ricerca Scientifica, 00133 Roma, Italy

S. KAMIN

School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel

(Submitted by: Juan Luis Vazquez)

1. Introduction. In this paper we consider nonnegative solutions of the degenerate parabolic equation

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} A(x, t) \frac{\partial u^m}{\partial x} \quad \text{in} \quad Q = \mathbb{R} \times \mathbb{R}^+ , \qquad (1.1)$$

where m > 1 is a constant. In addition $A(x,t) \in L^{\infty}(Q)$ and

$$0 < \lambda \le A(x,t) \le \Lambda \tag{1.2}$$

for some positive constants λ and Λ which do not depend on x and t.

If A(x,t) = 1 for all $(x,t) \in Q$, then (1.1) is the classical porous media equation

$$u_t = (u^m)_{xx} \quad \text{in} \quad Q , \qquad (1.3)$$

which has been studied extensively during the last three decades. Since m > 1, the diffusion coefficient mu^{m-1} vanishes at points where u vanishes, which leads to the existence of nonclassical solutions, and to the property of finite speed of propagation, i.e., if initially a solution has compact support, its support remains compact for all later times. Because of its simple structure, equation (1.3) has become a model equation for a large class of

Received for publication July 1998.

AMS Subject Classifications: 35K55, 35K65.