Advances in Differential Equations

BIFURCATION FOR THE *p*-LAPLACIAN IN \mathbb{R}^{N*}

J. GARCÍA AZORERO

Departamento de Matemáticas, de la Universidad Autónoma de Madrid Cantoblanco 28049, Madrid, Spain

E. Montefusco

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

I. PERAL

Departamento de Matemáticas, de la Universidad Autónoma de Madrid Cantoblanco 28049, Madrid, Spain

(Submitted by: Antonio Ambrosetti)

1. Introduction. In this work we look for positive (weak) solutions of the following problems

$$-\Delta_p u(x) + \alpha u^{p-1}(x) = \lambda h(x)u^{q-1}(x) + g(x)u^{r-1}(x), \quad x \in \mathbb{R}^N, \quad (P_\lambda)$$

with $1 , <math>1 < q < p < r < p^*$, where

$$p^* := \begin{cases} \frac{Np}{N-p}, & 1$$

 λ is a real parameter, $\alpha \geq 0$, h and g verify some integrability conditions. When p = 2 the problem corresponds to the classical *Laplacian* and also in this case the results are new. We will study three different cases:

(I) The case where $\alpha = 1$, $h \in L^s(\mathbb{R}^N)$, for all $s \in (1, \infty]$, and $g \in L^t(\mathbb{R}^N)$, where t is an exponent that will be made precise later. We look for solutions $u \in W^{1,p}(\mathbb{R}^N)$.

Received for publication September 1998.

^{*}First and third authors partially supported by D.G.E.S. Project PB97-0052. The second supported by Universidad Autonóma of Madrid and E.E.C. (contract no. ER-BCHRXCT940494). Work also supported by Accion Integrada España-Italia Ref. HI1997-0049.

AMS Subject Classifications: 35J20, 35J60, 35J70, 58G28