Advances in Differential Equations

Volume 8, Number 7, July 2003, Pages 787-820

BLOWUP BEHAVIOR OF SOLUTIONS TO THE RESCALED JÄGER-LUCKHAUS SYSTEM

Takasi Senba

Applied Mathematics, Faculty of Engineering, Miyazaki University 1-1 Gakuen Kibanadai Nishi, Miyazaki, 889-2192, Japan

Takashi Suzuki

Department of Mathematics, Graduate School of Science, Osaka University Machikaneyamacho 1-1, Toyonakashi 560-0043 Japan

(Submitted by: Reza Aftabizadeh)

1. INTRODUCTION

In this paper, we consider the blowup behavior of solutions to the rescaled Jäger-Luckhaus system.

In [9], Jäger and Luckhaus introduced the following parabolic-elliptic system.

$$\begin{aligned} u_t &= \nabla \cdot (\nabla u - u \nabla v) & \text{in} \quad \Omega \times (0, T) \\ 0 &= \Delta v + u - \lambda / |\Omega| & \text{in} \quad \Omega \times (0, T) \\ \partial u / \partial \nu &= \partial v / \partial \nu = 0 & \text{on} \quad \partial \Omega \times (0, T) \\ \int_{\Omega} v dx &= 0 & \text{in} \quad [0, T) \\ u|_{t=0} &= u_0 & \text{in} \quad \Omega. \end{aligned}$$
(1.1)

Here, $\Omega \subset \mathbf{R}^2$ denotes a bounded domain with smooth boundary $\partial\Omega$, ν is the outer normal unit vector, and $|\Omega|$ is the area of Ω . The initial value u_0 is smooth, nonnegative, and nontrivial. Let $\lambda = ||u_0||_{L^1(\Omega)} > 0$. Here and henceforth, $|| \cdot ||_{L^p(\Omega)}$ denotes the standard $L^p(\Omega)$ norm for $1 \leq p \leq \infty$.

We refer to (1.1) as the Jäger-Luckhaus system. The Jäger-Luckhaus system is a simplified system compared to the one introduced by Keller and Segel [10] or Nanjundiah [14]. Those systems describe the chemotactic feature of some organisms (cellar slime molds) sensitive to the gradient of a chemical substance secreted by themselves. We refer to the one introduced by Nanjundiah [14] as the Keller-Segel model.

Accepted for publication: December 2002.

AMS Subject Classifications: 35K55, 35K57, 92C15, 92D15.