Volume 11, Number 1 (2006), 91–119

Advances in Differential Equations

FIRST EIGENVALUE AND MAXIMUM PRINCIPLE FOR FULLY NONLINEAR SINGULAR OPERATORS

ISABEAU BIRINDELLI Università di Roma "La Sapienza" Piazzale Aldo Moro, 5, 00185 Roma, Italy

FRANÇOISE DEMENGEL Université de Cergy-Pontoise Site de Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France

(Submitted by: Jean-Michel Coron)

1. INTRODUCTION

In this paper we introduce the notion of *first eigenvalue* for fully nonlinear operators which are nonvariational but homogeneous. It is unnecessary to emphasize the importance of knowing the spectrum of a linear operator. When the operator is a uniformly elliptic operator of second order $Lu = tr(A(x)D^2u)$ associated with a Dirichlet problem in a bounded domain Ω the spectrum is a point spectrum bounded from below and the first eigenvalue $\overline{\lambda}$ is paramount. It is well known that $\overline{\lambda}$ is positive and it satisfies:

• There exists a positive function ϕ satisfying

$$\begin{cases} L\phi + \bar{\lambda}\phi = 0 & \text{in } \Omega\\ \phi = 0 & \text{on } \partial\Omega. \end{cases}$$

• For any $\lambda < \overline{\lambda}$ and for any $f \in L^N(\Omega)$ there exists a unique u such that

$$\begin{cases} Lu + \lambda u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

See e.g. [13] for the proof of these results under suitable conditions on A(x) and Ω . Berestycki, Nirenberg and Varadhan, in [3], have characterized the first eigenvalue of -L in Ω by the fact that it is the supremum of the values λ such that $L + \lambda$ satisfies the maximum principle in Ω . Let us recall that $L + \lambda$ satisfies the maximum principle in Ω if any solution of $Lu + \lambda u \geq 0$ in Ω which is nonpositive on the boundary of Ω is nonpositive in Ω .

Accepted for publication: July 2005.

AMS Subject Classifications: 35B50, 35B65, 35P15.