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1. Introduction

In this paper we introduce the notion of first eigenvalue for fully nonlinear
operators which are nonvariational but homogeneous. It is unnecessary to
emphasize the importance of knowing the spectrum of a linear operator.
When the operator is a uniformly elliptic operator of second order Lu =
tr(A(x)D2u) associated with a Dirichlet problem in a bounded domain Ω the
spectrum is a point spectrum bounded from below and the first eigenvalue
λ̄ is paramount. It is well known that λ̄ is positive and it satisfies:

• There exists a positive function φ satisfying{
Lφ + λ̄φ = 0 in Ω
φ = 0 on ∂Ω.

• For any λ < λ̄ and for any f ∈ LN (Ω) there exists a unique u such
that {

Lu + λu = f in Ω
u = 0 on ∂Ω.

See e.g. [13] for the proof of these results under suitable conditions on
A(x) and Ω. Berestycki, Nirenberg and Varadhan, in [3], have characterized
the first eigenvalue of −L in Ω by the fact that it is the supremum of the
values λ such that L + λ satisfies the maximum principle in Ω. Let us recall
that L+λ satisfies the maximum principle in Ω if any solution of Lu+λu ≥ 0
in Ω which is nonpositive on the boundary of Ω is nonpositive in Ω.
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