ALBANIAN JOURNAL OF MATHEMATICS Volume 1, Number 4, Pages 213–221 ISSN 1930-1235: (2007)

DISCRETE SERIES REPRESENTATIONS OF *p*-ADIC GROUPS ASSOCIATED TO SYMMETRIC SPACES

JEFFREY HAKIM

1. INTRODUCTION

The purpose of this paper is study the natural symmetric space analogues of various notions related to discrete series representations of a *p*-adic group such as Schur's orthogonality relations and formal degrees.

We study representations of the group $G = \mathbf{G}(F)$ of *F*-rational points of a connected, reductive *F*-group \mathbf{G} , where *F* is a finite extension of a field \mathbb{Q}_p of *p*-adic numbers for some odd prime *p*.

The representations of interest are associated to a symmetric space $H \setminus G$, where $H = \mathbf{H}(F)$ and \mathbf{H} is the group of fixed points of some *F*-automorphism θ of \mathbf{G} of order two.

To be more precise, we are interested in irreducible admissible complex representations (π, V) of G that are *H*-distinguished in the sense that there exists a nonzero linear form $\tilde{\lambda}: V \to \mathbb{C}$ that is *H*-fixed or, in other words,

$$\langle \pi(h)v, \hat{\lambda} \rangle = \langle v, \hat{\lambda} \rangle,$$

for all $h \in H$ and $v \in V$. From now on, assume that such a representation (π, V) has been fixed. Note that H-distinction¹ implies that the restriction of the central quasi-character of π to Z_H is trivial.

The latter linear forms, together with 0, comprise the space $\operatorname{Hom}_H(\pi, 1)$ and Frobenius Reciprocity maps this space isomorphically onto the space

$$\operatorname{Hom}_G(\pi, C^{\infty}(H \setminus G)),$$

where $C^{\infty}(H\backslash G)$ is the space of smooth complex-valued functions on $H\backslash G$ viewed as a *G*-module with respect to right translations by *G*. So π is *H*-distinguished precisely when it has a *G*-invariant embedding in $C^{\infty}(H\backslash G)$. In this sense, the *H*-distinguished representations are precisely the representations that contribute to the harmonic analysis on $H\backslash G$.

For convenience, we will make some simplifying assumptions that are generally satisfied in applications. Let $(\tilde{\pi}, \tilde{V})$ be the contragredient of (π, V) . We assume that $\operatorname{Hom}_{H}(\tilde{\pi}, 1)$, in addition to $\operatorname{Hom}_{H}(\pi, 1)$, is nonzero and, furthermore, we assume that both of the latter spaces are finite-dimensional.

Let **Z** be the center of **G** and let $\mathbf{Z}_{\mathbf{H}} = \mathbf{Z} \cap \mathbf{H}$ and let $Z = \mathbf{Z}(F)$ and $Z_H = \mathbf{Z}_{\mathbf{H}}(F)$. We fix a Haar measure on H/Z_H for use in our integrations over the latter quotient.

©2007 Aulona Press (Albanian J. Math.)

 $^{^{1}}$ At the suggestion of Hervé Jacquet, we refer to the property of being *H*-distinguished as "*H*-distinction," rather than "*H*-distinguishedness."