CORRECTION TO "MODULI SPACES OF NONNEGATIVE SECTIONAL CURVATURE AND NON-UNIQUE SOULS"
 [JOURNAL OF DIFFERENTIAL GEOMETRY 89 (2011), NO. 1, 49-85.]

Igor Belegradek, Seawomir Kwasik \& Reinhard Schultz

The purpose of this note is to report two misstatements in [1] which, luckily, has affected no other result in the literature.

Proposition 2.8 in [$\mathbf{1}$] claims that the map soul is a homeomorphism, but only establishes its continuity, where the topology is C^{k} the domain and $C^{k_{0}}$ on the co-domain with $k_{0}=\max \{0, k-1\}$. The inverse of soul is continuous if and only if $k=k_{0}$, i.e., k is zero or infinity. The other results in $[\mathbf{1}, \mathbf{2}]$ are unaffected since they assume $k=\infty$. A correction for $k \geq 2$ can be found in [8, Corollary 2.2].

In [1, Proposition 4.4] we inadvertently omitted an assumption, which was satisfied in all applications of the proposition in $[\mathbf{1}, \mathbf{2}]$. To describe the omission let ξ, η be smooth vector bundles over closed n-manifolds B_{ξ}, B_{η} sharing the same total space, and consider the map $f_{\xi, \eta}: B_{\xi} \rightarrow$ B_{η} obtained by composing the zero section of ξ with the projection of η. Proposition 4.4 claims that if $f_{\xi, \eta}$ pulls η back to ξ, then $f_{\xi, \eta}$ has trivial normal invariant. This was used in $[\mathbf{1 , 2}]$ only when ξ has 2 -dimensional fibers, and under this assumption the claim is true. Furthermore, in this case the assumption that $f_{\xi, \eta}$ pulls η back to ξ can be dropped, namely, we shall prove below that if ξ has 2 -dimensional fibers, then $f_{\xi, \eta}$ has trivial normal invariant, and $f_{\xi, \eta}$ pulls η to ξ. Note that either conclusion implies that $f_{\xi, \eta}$ is tangential, i.e., it preserves the stable tangent bundle.

A counterexample to the original statement of Proposition 4.4 is given by any pair of closed smooth simply-connected manifolds B_{1}, B_{2} of dimension ≥ 5 that are tangentially homotopy equivalent and nonhomeomorphic. In this case $B_{1} \times \mathbb{R}^{k}, B_{2} \times \mathbb{R}^{k}$ are diffeomorphic for every sufficiently large k, and any homotopy equivalence of B_{1} and B_{2} clearly preserves the trivial normal bundles. If the homotopy equivalence had trivial normal invariant, then B_{1}, B_{2} would be homeomorphic, see [3, Corollary II.3.8]. In fact, there even exist B_{1}, B_{2} as above with metrics of nonnegative curvature which was the setting of [1]; such examples can be found in [5, p. 114], [4, Proposition 5.6], and [6].

