J. DIFFERENTIAL GEOMETRY

 $\mathbf{82}\ (2009)\ 611\text{-}628$

COMPLETE CONSTANT MEAN CURVATURE SURFACES AND BERNSTEIN TYPE THEOREMS IN $\mathbb{M}^2 \times \mathbb{R}$

José M. Espinar & Harold Rosenberg

Abstract

In this paper we study constant mean curvature surfaces Σ in a product space, $\mathbb{M}^2 \times \mathbb{R}$, where \mathbb{M}^2 is a complete Riemannian manifold. We assume the angle function $\nu = \langle N, \frac{\partial}{\partial t} \rangle$ does not change sign on Σ . We classify these surfaces according to the infimum $c(\Sigma)$ of the Gaussian curvature of the projection of Σ .

When $H \neq 0$ and $c(\Sigma) \geq 0$, then Σ is a cylinder over a complete curve with curvature 2*H*. If H = 0 and $c(\Sigma) \geq 0$, then Σ must be a vertical plane or Σ is a slice $\mathbb{M}^2 \times \{t\}$, or $\mathbb{M}^2 \equiv \mathbb{R}^2$ with the flat metric and Σ is a tilted plane (after possibly passing to a covering space).

When $c(\Sigma) < 0$ and $H > \sqrt{-c(\Sigma)}/2$, then Σ is a vertical cylinder over a complete curve of \mathbb{M}^2 of constant geodesic curvature 2*H*. This result is optimal.

We also prove a non-existence result concerning complete multigraphs in $\mathbb{M}^2 \times \mathbb{R}$, when $c(\mathbb{M}^2) < 0$.

1. Introduction

The image of the Gauss map of a complete minimal surface in \mathbb{R}^3 may determine the surface. For example, an entire minimal graph is a plane (Bernsteins' Theorem [4]). More generally, if the Gaussian image misses more than four points, then it is a plane ([14]). The Gaussian image of Scherks' doubly periodic surface misses exactly four points.

The image of the Gauss map of a non-zero constant mean curvature surface in \mathbb{R}^3 does determine the surface under certain circumstances. Hoffman, Osserman and Schoen proved (see [16]): Let $\Sigma \subset \mathbb{R}^3$ be a complete surface of constant mean curvature. If the image of the Gauss map lies in an open hemisphere, then Σ is a plane. If the image is contained in a closed hemisphere, then Σ is a plane or a right cylinder. Unduloids show that this result is the best possible.

The first author is partially supported by Spanish MEC-FEDER Grant MTM2007-65249, and Regional J. Andalucia Grant P06-FQM-01642.

Received 02/05/2008.