J. DIFFERENTIAL GEOMETRY 81 (2009) 575-599

POINTS IN PROJECTIVE SPACES AND APPLICATIONS

IVAN CHELTSOV

Abstract

We prove the factoriality of a nodal hypersurface in \mathbb{P}^4 of degree d that has at most $2(d-1)^2/3$ singular points, and we prove the factoriality of a double cover of \mathbb{P}^3 branched over a nodal surface of degree 2r having less than (2r-1)r singular points.

1. Introduction

Let Σ be a finite subset in \mathbb{P}^n and $\xi \in \mathbb{N}$, where $n \ge 2$. Then the points of the set Σ impose independent linear conditions on homogeneous forms of degree ξ if and only if for every point $P \in \Sigma$ there is a homogeneous form of degree ξ that vanishes at every point of the set $\Sigma \setminus P$, and does not vanish at the point P. The latter is equivalent to the equality

$$h^1(\mathcal{I}_{\Sigma}\otimes\mathcal{O}_{\mathbb{P}^n}(\xi))=0,$$

where \mathcal{I}_{Σ} is the ideal sheaf of the subset $\Sigma \subset \mathbb{P}^n$.

In this paper we prove the following result (see Section 2).

Theorem 1. Suppose that there is a natural number $\lambda \ge 2$ such that at most λk points of the set Σ lie on a curve in \mathbb{P}^n of degree k. Then

$$h^1(\mathcal{I}_{\Sigma}\otimes\mathcal{O}_{\mathbb{P}^n}(\xi))=0$$

in the case when one of the following conditions holds:

- $\xi = |3\lambda/2 3|$ and $|\Sigma| < \lambda \lceil \lambda/2 \rceil$;
- $\xi = \lfloor 3\mu 3 \rfloor$, $|\Sigma| \leq \lambda \mu$ and $\lfloor 3\mu \rfloor \mu 2 \geq \lambda \geq \mu$ for some $\mu \in \mathbb{Q}$;
- $\xi = |n\mu|, |\Sigma| \leq \lambda \mu \text{ and } (n-1)\mu \geq \lambda \text{ for some } \mu \in \mathbb{Q}.$

Let us consider applications of Theorem 1.

Definition 2. An algebraic variety X is factorial if Cl(X) = Pic(X).

We assume that all varieties are projective, normal, and defined over \mathbb{C} . Received 12/14/2006.