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1. Introduct ion 

In this paper, we consider a sequence of positive C 2 solutions Ui of 

(1.1) Ani + K i(x)u p = 0 in B2 , 

where K i(x) is a sequence of C 1 positive functions defined in B2, the 

ball with center at 0 and radius 2, A = P j - ^ denotes the Laplacian 
j = 1 Xj 

of R a with n > 3, and 1 < p i t" n^rf- Throughout this paper, we always 
assume that K i is bounded between two fixed positive constants. One 
of the motivations in studying equation (1.1) arises from the problem 
of finding a metric conformal to the standard metric of R n such that 
K(x) is the scalar curvature of the new metric. Recently, there have 
been many works devoted to this problem. For details please see [2], 
[3], [6], [11], [15], [16], [23], • • -, and the references therein. It has been 
shown that for a sequence of solution Ui of (1.1), the blow-up does not 
occur at a noncritical point of {K i \ . We refer [15] and [8] for a proof of 
this statement. Hence in this article, we will assume that 0 is the only 
critical point of {Äi} , that is, K i satisfies the following: 

(1.2) For any e > 0, there exists c(e) > 0 such that 

c(e) < \VK i(x)\ < c i 

for |x | > e, where c\ is a positive constant independent of i and e. 
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