ON A MONGE-AMPÈRE EQUATION ARISING IN GEOMETRIC OPTICS

PENGFEI GUAN \& XU-JIA WANG

Abstract

In this paper we study a Monge-Ampère equation arising in geometric optics. We will establish the a priori estimates and derive the existence of solutions by the continuity method. We also give a Legendre-type transformation for this equation.

1. Introduction

We consider here an equation of Monge-Ampère type which arises in geometric optics. Suppose a point source of light is located at the origin $O \in \mathbb{R}^{3}$ and let Γ be a closed surface which is star-shaped with respect to the origin. If we identify each direction of the ray with a point on S^{2}, and the ray of the light reflects according to geometric optics, then the direction of the reflection defines a point on S^{2}. Hence we obtain a map from S^{2} to S^{2}. In [26], as a part of Problem 21, Yau asked: "How much information does this map tell us about the surface?" Let Γ be represented as a graph over the unit sphere S^{2}, $\Gamma=\left\{x \cdot \rho(x) ; \quad x \in S^{2}\right\}$. Let $\gamma(x)$ denote the unit outer normal of Γ at $x \cdot \rho(x)$, and $y=T(x)=T_{\rho}(x)$ the direction of the light reflected by Γ. Here we regard a unit vector as a point on S^{2}. By the reflection law we have

$$
y=x-2\langle x, \gamma\rangle \gamma
$$

Let $f(x)$ denote the intensity of the source O, and $g(y)$ the distribution of the directions of the reflected light on S^{2}. Both f and g are nonnegative and measurable. Suppose no energy is lost in reflection, and

[^0]
[^0]: Received September 241996.
 1991 Mathematics Subject Classification. 35J60, 53C45, 78A05.
 Key words and phrases. Geometric optics, Monge-Ampère equation, regularity, existence

