J. DIFFERENTIAL GEOMETRY 48 (1998) 205-223

ON A MONGE-AMPÈRE EQUATION ARISING IN GEOMETRIC OPTICS

PENGFEI GUAN & XU-JIA WANG

Abstract

In this paper we study a Monge-Ampère equation arising in geometric optics. We will establish the a priori estimates and derive the existence of solutions by the continuity method. We also give a Legendre-type transformation for this equation.

1. Introduction

We consider here an equation of Monge-Ampère type which arises in geometric optics. Suppose a point source of light is located at the origin $O \in \mathbb{R}^3$ and let Γ be a closed surface which is star-shaped with respect to the origin. If we identify each direction of the ray with a point on S^2 , and the ray of the light reflects according to geometric optics, then the direction of the reflection defines a point on S^2 . Hence we obtain a map from S^2 to S^2 . In [26], as a part of Problem 21, Yau asked: "How much information does this map tell us about the surface?" Let Γ be represented as a graph over the unit sphere S^2 , $\Gamma = \{x \cdot \rho(x); x \in S^2\}$. Let $\gamma(x)$ denote the unit outer normal of Γ at $x \cdot \rho(x)$, and $y = T(x) = T_{\rho}(x)$ the direction of the light reflected by Γ . Here we regard a unit vector as a point on S^2 . By the reflection law we have

$$y = x - 2\langle x, \gamma \rangle \gamma.$$

Let f(x) denote the intensity of the source O, and g(y) the distribution of the directions of the reflected light on S^2 . Both f and g are nonnegative and measurable. Suppose no energy is lost in reflection, and

Received September 24 1996.

¹⁹⁹¹ Mathematics Subject Classification. 35J60, 53C45, 78A05.

Key words and phrases. Geometric optics, Monge-Ampère equation, regularity, existence