J. DIFFERENTIAL GEOMETRY 48 (1998) 61-90

THE QUANTUM COHOMOLOGY OF BLOW-UPS OF \mathbb{P}^2 AND ENUMERATIVE GEOMETRY

L. GÖTTSCHE & R. PANDHARIPANDE

1. Introduction

The enumerative geometry of curves in algebraic varieties has taken a new direction with the appearance of Gromov-Witten invariants and quantum cohomology. Gromov-Witten invariants originate in symplectic geometry and were first defined in terms of pseudo-holomorphic curves. In algebraic geometry, these invariants are defined using moduli spaces of stable maps.

Let X be a nonsingular projective variety over \mathbb{C} . Let $\beta \in H_2(X,\mathbb{Z})$. In [13], the moduli space $\overline{M}_{0,n}(X,\beta)$ of stable *n*-pointed genus 0 maps is defined. This moduli space parametrizes the data $[\mu : C \to X, p_1, \ldots, p_n]$ where C is a connected, reduced, (at worst) nodal curve of genus 0, p_1, \ldots, p_n are nonsingular points of C, and μ is a morphism. $\overline{M}_{0,n}(X,\beta)$ is equipped with n morphisms ρ_1, \ldots, ρ_n to X where

$$\rho_i([\mu: C \to X, p_1, \dots, p_n]) = \mu(p_i).$$

X is a convex variety if $H^1(\mathbb{P}^1, f^*(T_X)) = 0$ for all maps $f : \mathbb{P}^1 \to X$. In this case, $\overline{M}_{0,n}(X,\beta)$ is a projective scheme of pure expected dimension equal to

$$dim(X) + n - 3 + \int_{\beta} c_1(T_X)$$

Received November 18, 1996. The second author was partially supported by an NSF post-doctoral fellowship.

Key words and phrases. Quantum cohomology, Gromov-Witten invariants.