J. DIFFERENTIAL GEOMETRY 45 (1997) 170-195

MEASURED SOLENOIDAL RIEMANN SURFACES AND HOLOMORPHIC DYNAMICS

MEIYU SU

Abstract

We study, from a measure theoretic point of view, the lamination structure on the inverse limit space $\lim_{t \to 0} (\overline{\mathbb{C}}, f)$ for an arbitrary rational map f on the sphere $\overline{\mathbb{C}}$. It turns out that there is an ergodic holomorphic foliated dynamical object \mathcal{L} , namely a self mapping of a measured solenoidal Riemann surface, which continuously injects into the inverse limit space, with full image and with leaves conformally isomorphic to the complex plane \mathbb{C} .

1. Introduction

The purpose of this note is to state and prove the following theorem which associates a holomorphic foliated dynamical object to an arbitrary rational map $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$. The definitions are given below.

Theorem. Given an arbitrary rational map $f : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ of degree $d \geq 2$ on the sphere $\overline{\mathbb{C}}$, there is an ergodic measured solenoidal Riemann surface \mathcal{L} whose leaves are isomorphic to the complex plane \mathbb{C} , a holomorphic bijection $F: \mathcal{L} \to \mathcal{L}$, and a holomorphic map $\pi: \mathcal{L} \to \overline{\mathbb{C}}$ so that $f^n \circ \pi = \pi \circ F^n$ for every positive integer n. Moreover, the induced map of \mathcal{L} into the reduced inverse limit space $\lim_{t \to \infty} (\mathbb{C}', f)$ is a continuous injection whose image intersects every fiber in full measure for the natural multiplicity fiber measures class (see the proof in Section 4).

Remarks and Definitions.

1. A topological solenoid, simply a solenoid, S is a topological space with local box charts homeomorphic to a product of the form (a

Received July 10, 1996.