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0. Introduct ion 

In this paper and in [12], [13], we study the structure of spaces, Y, 
which are pointed Gromov-Hausdorff limits of sequences, { (M n ,p i)}, 
of complete, connected Riemannian manifolds whose Ricci curvatures 
have a definite lower bound, say Ric M n > — (n — 1). In Sections 
5-7, and sometimes in [12], we also assume a lower volume bound, 
Vol (Bi(p i)) > v > 0. In this case, the sequence is said to be non-
collapsing. If l im^oo Vol (Bi(p i)) = 0, then the sequence is said to 
collapse. It turns out that a convergent sequence is noncollapsing if and 
only if the limit has positive n-dimensional Hausdorff measure. In par­
ticular, any convergent sequence is either collapsing or noncollapsing. 
Moreover, if the sequence is collapsing, it turns out that the Hausdorff 
dimension of the limit is actually < n — 1; see Sections 3 and 5. 

Our theorems on the infinitesimal structure of limit spaces have 
equivalent statements in terms of (or implications for) the structure on 
a small but definite scale, of manifolds with Ric M n > — (n — 1). Al­
though both contexts are significant, for the most part, it is the limit 
spaces which are emphasized here. Typically, the relation between corre­
sponding statements for manifolds and limit spaces follows directly from 
the continuity of the geometric quantities in question under Gromov-
Hausdorff limits, together with Gromov's compactness theorem, [37]; 
Theorems 2.45, 5.12 (see also Remark 5.13), 7.5, 7.6, are examples of 
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