CONTACT CIRCLES ON 3-MANIFOLDS

HANSJÖRG GEIGES \& JESÚS GONZALO

A contact circle on a 3-manifold is a pair of contact forms that defines a linear circle of contact forms (see below for the formal definition). This concept was introduced in [6], and there we gave a complete classification of those 3 -manifolds that admit a contact circle satisfying a certain additional volume constraint.

In the present paper, whose methods are independent of those employed in [6], we show that every (closed, orientable) 3 -manifold admits a contact circle.

1. Outline

We begin by recalling the precise definition of a contact circle.
Definition 1.1. A contact circle on a 3 -manifold is a pair of contact forms $\left(\omega_{1}, \omega_{2}\right)$ such that any non-trivial linear combination $\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}$ with constant coefficients $\left(\lambda_{1}, \lambda_{2}\right) \neq(0,0)$ is again a contact form.

In other words, we call a pair of 1 -forms $\left(\omega_{1}, \omega_{2}\right)$ a contact circle if

$$
\left(\lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}\right) \wedge\left(\lambda_{1} d \omega_{1}+\lambda_{2} d \omega_{2}\right)
$$

is a volume form for all $\left(\lambda_{1}, \lambda_{2}\right) \neq(0,0)$, and it clearly suffices to check this condition for (λ_{1}, λ_{2}) with $\lambda_{1}^{2}+\lambda_{2}^{2}=1$, hence the name.

[^0]
[^0]: Received May 30, 1996. The first author was partially supported by a Research Fellowship at Queens' College, Cambridge, and the second author by the Isaac Newton Institute, Cambridge, and by the Forschungsinstitut für Mathematik, ETH Zürich.

