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1. Introduct ion 

Characterizing the universal coverings of smooth projective varieties 
is an old and hard question. Central to the subject is a conjecture of 
Shafarevich according to which the universal cover X of a smooth pro
jective variety is holomorphically convex, meaning that for every infinite 
sequence of points without limit points in X there exists a holomorphic 
function unbounded on this sequence. 

In this paper we try to study the universal covering of a smooth 
projective variety X whose fundamental group vri(X) admits an infinite 
image homomorphism 

p:7T1(X)^L 

into a complex linear algebraic group L. We will say that a nonramified 
Galois covering X ' —> X corresponds to a representation p : vri(X) —> L 
if its group of deck transformations is im(p). 

Definit ion 1.1. We call a representation p : vri(X) —> L linear, 
reductive, solvable or nilpotent if the Zariski closure of its image is a 
linear, reductive, solvable or nilpotent algebraic subgroup in L. We 
call the corresponding covering linear, reductive, solvable or nilpotent 
respectively. 

The natural homomorphism TTI(X, x) —> 7runi(X, x) to Malcev's pro-
unipotent completion will be called the Malcev representation and the 
corresponding covering the Malcev covering. 
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