RIEMANN-ROCH FOR TORIC ORBIFOLDS

VICTOR GUILLEMIN

1. Introduction

Let $\alpha_{1}, \ldots, \alpha_{d}$ and μ be elements of the integer lattice, \mathbf{Z}^{n}, and let $N(\mu)$ be the number of solutions, $k=\left(k_{1}, \ldots, k_{d}\right)$, of the equation

$$
\begin{equation*}
k_{1} \alpha_{1}+\ldots+k_{d} \alpha_{d}=\mu \tag{1.1}
\end{equation*}
$$

the k_{i} 's being non-negative integers. For this equation to be well-posed we will assume that the α_{i} 's lie in a fixed open half-space. In other words: for all $i, \xi\left(\alpha_{i}\right)>0$, for some $\xi \in\left(\mathbf{R}^{n}\right)^{*}$. (Otherwise, for every μ for which (1.1) admits a solution it will admit an infinite number of solutions!) Also, in order for (1.1) to be solvable, μ has to be contained in the lattice generated by the α_{i} 's, and, with no essential loss of generality, we can assume that this lattice is \mathbf{Z}^{n} itself.

For every subset, I, of $\{1, \ldots, d\}$ let \mathbf{R}^{I} be the subspace of \mathbf{R}^{n} spanned by those α_{i} 's for which i is in I. We will say that μ is in general position with respect to $\alpha_{1}, \ldots, \alpha_{d}$ if $\mu \in \mathbf{R}^{I} \leftrightarrow \mathbf{R}^{I}=\mathbf{R}^{n}$. (Thus the elements of \mathbf{R}^{I} are not in general position with respect to α_{1}, \ldots, α_{d} if \mathbf{R}^{I} is a proper subspace of \mathbf{R}^{n}.)

Let us consider the real analogue of (1.1):

$$
\begin{equation*}
s_{1} \alpha_{1}+\ldots+s_{d} \alpha_{d}=\mu+\epsilon \quad, \quad \epsilon \in \mathbf{R}^{n} \tag{1.2}
\end{equation*}
$$

the s_{i} 's being non-negative real numbers. The set of solutions, s, of this equation is a convex polytope in \mathbf{R}^{d}. We will denote this polytope by $\Delta_{\mu+\epsilon}$ and its I-th face:

$$
\begin{equation*}
\Delta_{\mu+\epsilon}^{I}=\left\{s=\left(s_{1}, \ldots, s_{d}\right) \in \Delta_{\mu+\epsilon}, s_{i}=0 \text { for } i \in I\right\} \tag{1.3}
\end{equation*}
$$

by $\Delta_{\mu+\epsilon}^{I}$. We claim:

[^0]
[^0]: Received December 26 1995. Author supported by NSF grant DMS 890771.

