WHITNEY FORMULA IN HIGHER DIMENSIONS

G. MIKHALKIN \& M. POLYAK

Abstract

The classical Whitney formula relates the algebraic number of times that a generic immersed plane curve cuts itself to the index ("rotation number") of this curve. Both of these invariants are generalized to higher dimension for the immersions of an n-dimensional manifold into an open ($n+1$)-manifold with the null-homologous image. We give a version of the Whitney formula if n is even. We pay special attention to immersions of S^{2} into \mathbb{R}^{3}. In this case the formula is stated in the same terms which were used by Whitney for immersions of S^{1} into \mathbb{R}^{2}.

1. Introduction

Let $f: S^{1} \rightarrow \mathbb{R}^{2}$ be a generic immersion (i.e., an immersion without triple points and self-tangencies). The index of f is the degree of the Gauss map (which maps S^{1} to the direction of $d f(v)$ where v is a tangent vector field positive with respect to the standard orientation of S^{1}). Whitney in [7] showed that the index is the only invariant of f up to deformation in the class of immersions.

Fix a generic point $x \in S^{1}$. The cyclic order on S^{1} determined by the orientation defines a linear order on $S^{1}-\{x\}$. This determines an ordering of the positive vectors tangent to the two branches of f at every double point d of f. Following Whitney we define the $\operatorname{sign} \epsilon_{x}(d)$ of d to be +1 (resp. -1) if the frame composed of these tangent vectors is negative (resp. positive) in \mathbb{R}^{2}.

We define the function ind : $\mathbb{R}^{2} \rightarrow \frac{1}{2} \mathbb{Z}$ in the following way. The (integer) value of ind at $y \in \mathbb{R}^{2}-f\left(S^{1}\right)$ is defined as the linking number of the oriented cycle $f\left(S^{1}\right)$ and the 0 -dimensional cycle composed of the point y taken with the positive orientation and a point near infinity taken with the negative

[^0]
[^0]: Received October 10, 1995.

