SHORT TIME BEHAVIOR OF THE HEAT KERNEL AND ITS LOGARITHMIC DERIVATIVES

PAUL MALLIAVIN & DANIEL W. STROOCK

Abstract

Let M be a compact, connected Riemannian manifold, and let $p_t(x, y)$ denote the fundamental solution to Cauchy initial value problem for the heat equation $\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u$, where Δ is the Levi-Civita Laplacian. The purpose of this note is to study the asymptotic behavior of derivatives of $\log p_t(\cdot, y)$ at x as $t \searrow 0$. In particular, we show that a dramatic change takes place when x moves inside the cut-locus of y.

0. Introduction

Let M be a compact, connected, d-dimensional Riemannian manifold, denote by $\mathcal{O}(\mathcal{M})$ with fiber map $\pi : \mathcal{O}(\mathcal{M}) \longrightarrow M$ the associated bundle of orthonormal frames \mathfrak{e} , and use the Levi-Civita connection to determine the horizontal subspace $H_{\mathfrak{e}}(\mathcal{O}(\mathcal{M}))$ at each $\mathfrak{f} \in \mathcal{O}(\mathcal{M})$. Next, given $\mathbf{v} \in \mathbb{R}^d$, let $\mathfrak{E}(\mathbf{v})$ be the basic vector field on $\mathcal{O}(\mathcal{M})$ determined by properties that

$$\mathfrak{E}(\mathbf{v})_{\mathfrak{e}} \in H_{\mathfrak{e}}(\mathcal{O}(\mathcal{M})) \quad ext{and} \quad d\pi \mathfrak{E}(\mathbf{v})_{\mathfrak{e}} = \mathfrak{e}\mathbf{v} \quad ext{for all } \mathfrak{e} \in \mathcal{O}(\mathcal{M}).$$

(Here, and whenever convenient, we think of \mathfrak{e} as an isometry from \mathbb{R}^d onto $T_{\pi(\mathfrak{e})}(M)$.) In particular, if $\{\mathbf{e}_1, \ldots, \mathbf{e}_d\}$ is the standard orthonormal basis in \mathbb{R}^d , then we set $\mathfrak{E}_k(\mathfrak{e}) = \mathfrak{E}(\mathbf{e}_k)_{\mathfrak{e}}$. If, for $\mathcal{O} \in O(d)$ (the orthogonal group on \mathbb{R}^d) $R_{\mathcal{O}} : \mathcal{O}(\mathcal{M}) \longrightarrow \mathcal{O}(\mathcal{M})$ is defined so that

$$R_{\mathcal{O}} \mathfrak{e} \mathbf{v} = \mathfrak{e} \mathcal{O} \mathbf{v}, \quad \mathfrak{e} \in \mathcal{O}(\mathcal{M}) \text{ and } \mathbf{v} \in \mathbb{R}^d,$$

then it easy to check that

(0.1)
$$dR_{\mathcal{O}}\mathfrak{E}(\mathbf{v})_{\mathfrak{e}} = \mathfrak{E}(\mathcal{O}^{\top}\mathbf{v})_{R_{\mathcal{O}}\mathfrak{e}}, \quad \mathfrak{e} \in \mathcal{O}(\mathcal{M}) \text{ and } \mathbf{v} \in \mathbb{R}^{d}.$$

Received September 5, 1995. Support was provided to the second author by NSF grant 9302709–DMS