THE ATIYAH-JONES CONJECTURE FOR CLASSICAL GROUPS AND BOTT PERIODICITY

YOULIANG TIAN

0. Introduction

In this note we construct a *L*-stratification of $\mathcal{M}_k(G)$, the based G-moduli space of instantons (or equivalently anti instantons) of charge k over S^4 . The structure groups we concern ourself with here are SO(n) for n > 6 and Sp(n). Then the general machinery of [6] is applied to prove

Theorem A. For G = SO(n) with n > 6 or G = Sp(n) and for all k > 0 and all primes p, the Taubes inclusion map $\iota_k : \mathcal{M}_k(G) \longrightarrow \mathcal{M}_{k+1}(G)$ induces an isomorphism in homology

$$(\iota_k)_t : H_t(\mathcal{M}_k(G); \mathbb{A}) \cong H_t(\mathcal{M}_{k+1}(G); \mathbb{A})$$

for $t \leq q = q(k) = [k/2] - 1$ and $\mathbb{A} = \mathbb{Z}$ or \mathbb{Z}/p .

The stratifications also lead naturally to the computation of the fundamental groups. We shall show that $\mathcal{M}_k(SO(n))$ are all simply connected for n > 6, and that the fundamental groups of $\mathcal{M}_k(SP(n))$ are always $\mathbb{Z}/2$. The argument of [6] can be applied to improve Theorem A as to state that ι_k induces a homotopy equivalence through dimension at least $\lfloor k/2 \rfloor - 1$ for SO(n), n > 6 and at least $\lfloor k/2 \rfloor - 2$ for Sp(n). As a consequence of it, we are able to confirm the Atiyah-Jones conjecture that relates the homotopy of \mathcal{M}_k to that of $\Omega_0^3 G$, a connected component of 3-fold loop space of group G (see [4]). To be precise, we shall prove

Theorem B. For all positive integers k, the induced map (from ϑ_k)

$$(\vartheta_k)_t: \pi_t(\mathcal{M}_k(G)) \longrightarrow \pi_t(\Omega_0^3 G)$$

on homotopy groups is an isomorphism for $t \leq q(k) = \lfloor k/2 \rfloor - 1$ if G = SO(n), n > 6; and for $t \leq q(k) = \lfloor k/2 \rfloor - 2$ if G = Sp(n).

Received October 17, 1994, and in revised form, May 31, 1995. This work is supported by NSF grant DMS 9304580 and an NSF postdoctoral fellowship.