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1. Introduction

The central result of this paper, Theorem 6.1, gives a constraint
that must be satisfied by the generators of any free, topologically tame
Kleinian group without parabolic elements. The following result is case
(a) of Theorem 6.1.

Main Theorem. Let k > 2 be an integer and let ® be a purely
lozodromic, topologically tame discrete subgroup of Isom, (H3) which is
freely generated by elements &,,... ,&. Let z be any point of H® and
set d; = dist(z,&; - z) fori=1,... k. Then we have
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In particular there is some i € {1,... ,k} such that d; > log(2k — 1).

The last sentence of the Main Theorem, in the case k = 2, is equiv-
alent to the main theorem of [14]. While most of the work in proving
this generalization involves the extension from rank 2 to higher ranks,
the main conclusion above is strictly stronger than the main theorem of
[14] even in the case k = 2 .

Like the main result of [14], Theorem 6.1 has applications to the study
of large classes of hyperbolic 3-manifolds. This is because many sub-
groups of the fundamental groups of such manifolds can be shown to be
free by topological arguments. The constraints on these free subgroups
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