RATIONALITY OF SECONDARY CLASSES

ALEXANDER REZNIKOV

Abstract

We prove the Bloch conjecture : $c_2(E) \in H^4_{\mathcal{D}}(X,\mathbb{Z}(2))$ is torsion for holomorphic rank-two vector bundles E with an integrable connection over a complex projective variety X. We prove also the rationality of the Chern-Simons invariant of compact arithmetic hyperbolic three-manifolds. We give a sharp higher-dimensional Milnor inequality for the volume regulator of all representations to PSO(1,n) of fundamental groups of compact *n*-dimensional hyperbolic manifolds, announced in our earlier paper.

1. The theorem

1.1. Let X be a smooth complex projective variety. Consider a representation $\rho : \pi_1(X) \to SL(2,\mathbb{C})$. Let E_{ρ} be the corresponding rank-two vector bundle over X. Viewing E_{ρ} as an algebraic vector bundle, denote by $c_2(E_{\rho})$ the second Chern class in Deligne cohomology group $H^4_{\mathcal{D}}(X,\mathbb{Z}(2))$ ([15], [20]). Recall that there is an exact sequence $0 \to J^2(X) \to H^4_{\mathcal{D}}(X,\mathbb{Z}(2)) \to H^4(X,\mathbb{Z}(2))$, and by the Chern-Weil theory, the image of $c_2(E_{\rho})$ in $H^4(X,\mathbb{Z}(2))$ is torsion. Therefore $c_2(E_{\rho})$ lies in the image of $H^3(X, \mathbb{C}/\mathbb{Z})$ under the natural map $H^3(X, \mathbb{C}/\mathbb{Z}) \to H^3(X, \mathbb{C}/\mathbb{Z}(2)) \to H^4_{\mathcal{D}}(X, \mathbb{Z}(2))$. It was proved by Bloch [3], Gillet-Soulé [24] and Soulé [50] that in fact, $c_2(E_{\rho})$ is an image of the secondary characteristic class $Ch(\rho)$ of a flat bundle E_{ρ} (equivalently, of a representation ρ), lying in $H^{3}(X, \mathbb{C}/\mathbb{Z})$. The \mathbb{R}/\mathbb{Z} part of this class was introduced and studied by Chern-Simons [9] and Cheeger-Simons [8], and will be called Cheeger-Chern-Simons class and denoted $ChS(\rho)$. The R-part lying in $H^3(X, \mathbb{R})$ will be called Borel hyperbolic volume class (regulator) and denoted $Vol(\rho)$. Remark that if ρ is unitary, then $Vol(\rho) = 0$. Next, for a field F denote $\mathcal{B}(F)$ the Bloch group of F. Recall that for F algebraically closed there is an exact sequence $0 \to \mu_F^{\otimes 2} \to H_3(SL(2,F),\mathbb{Z}) \to \mathcal{B}(F) \to 0$ of Bloch-Wigner-Dupont-Sah [19]. The dilogarithm function of Bloch-Wigner defines a homomorphism $D: \mathcal{B}(\mathbb{C}) \to \mathbb{C}/\mathbb{Q} = \mathbb{R}/\mathbb{Q} \oplus i\mathbb{R}$ which splits to

Received June 29, 1994, and, in revised form, January 18, 1995.