RATIONALITY OF SECONDARY CLASSES

ALEXANDER REZNIKOV

Abstract

We prove the Bloch conjecture : $c_{2}(E) \in H_{\mathcal{D}}^{4}(X, \mathbb{Z}(2))$ is torsion for holomorphic rank-two vector bundles E with an integrable connection over a complex projective variety X. We prove also the rationality of the ChernSimons invariant of compact arithmetic hyperbolic three-manifolds. We give a sharp higher-dimensional Milnor inequality for the volume regulator of all representations to $\operatorname{PSO}(1, n)$ of fundamental groups of compact n-dimensional hyperbolic manifolds, announced in our earlier paper.

1. The theorem

1.1. Let X be a smooth complex projective variety. Consider a representation $\rho: \pi_{1}(X) \rightarrow S L(2, \mathbb{C})$. Let E_{ρ} be the corresponding rank-two vector bundle over X. Viewing E_{ρ} as an algebraic vector bundle, denote by $c_{2}\left(E_{\rho}\right)$ the second Chern class in Deligne cohomology group $H_{\mathcal{D}}^{4}(X, \mathbb{Z}(2))$ ([15], [20]). Recall that there is an exact sequence $0 \rightarrow J^{2}(X) \rightarrow H_{\mathcal{D}}^{4}(X, \mathbb{Z}(2)) \rightarrow H^{4}(X, \mathbb{Z}(2))$, and by the Chern-Weil theory, the image of $c_{2}\left(E_{\rho}\right)$ in $H^{4}(X, \mathbb{Z}(2))$ is torsion. Therefore $c_{2}\left(E_{\rho}\right)$ lies in the image of $H^{3}(X, \mathbb{C} / \mathbb{Z})$ under the natural $\operatorname{map} H^{3}(X, \mathbb{C} / \mathbb{Z}) \rightarrow H^{3}(X, \mathbb{C} / \mathbb{Z}(2)) \rightarrow H_{\mathcal{D}}^{4}(X, \mathbb{Z}(2))$. It was proved by Bloch [3], Gillet-Soulé [24] and Soulé [50] that in fact, $c_{2}\left(E_{\rho}\right)$ is an image of the secondary characteristic class $C h(\rho)$ of a flat bundle E_{ρ} (equivalently, of a representation ρ), lying in $H^{3}(X, \mathbb{C} / \mathbb{Z})$. The \mathbb{R} / \mathbb{Z} part of this class was introduced and studied by Chern-Simons [9] and Cheeger-Simons [8], and will be called Cheeger-Chern-Simons class and denoted $C h S(\rho)$. The \mathbb{R}-part lying in $H^{3}(X, \mathbb{R})$ will be called Borel hyperbolic volume class (regulator) and denoted $\operatorname{Vol}(\rho)$. Remark that if ρ is unitary, then $\operatorname{Vol}(\rho)=0$. Next, for a field F denote $\mathcal{B}(F)$ the Bloch group of F. Recall that for F algebraically closed there is an exact sequence $0 \rightarrow \mu_{F}^{\otimes 2} \rightarrow H_{3}(S L(2, F), \mathbb{Z}) \rightarrow \mathcal{B}(F) \rightarrow 0$ of Bloch-Wigner-Dupont-Sah [19]. The dilogarithm function of Bloch-Wigner defines a homomorphism $D: \mathcal{B}(\mathbb{C}) \rightarrow \mathbb{C} / \mathbb{Q}=\mathbb{R} / \mathbb{Q} \oplus i \mathbb{R}$ which splits to

[^0]
[^0]: Received June 29, 1994, and, in revised form, January 18, 1995.

