ON THE MODULI SPACE OF POLYGONS IN THE EUCLIDEAN PLANE

MICHAEL KAPOVICH \& JOHN MILLSON

Abstract

We study the topology of moduli spaces of polygons with fixed side lengths in the Euclidean plane. We establish a duality between the spaces of marked Euclidean polygons with fixed side lengths and marked convex Euclidean polygons with prescribed angles.

1. We consider the space \mathcal{P}_{n} of all polygons with n distinguished vertices in the Euclidean plane \mathbb{E}^{2} whose sides have nonnegative length allowing all possible degenerations of the polygons except the degeneration of the polygon to a point. Two polygons are identified if there exists an orientation preserving similarity of the complex plane $\mathbb{C}=\mathbb{E}^{2}$ which sends vertices of one polygon to vertices of another one. We shall denote the edges of the n-gon P by: e_{1}, \ldots, e_{n} and vertices by v_{1}, \ldots, v_{n} so that $\vec{e}_{j}=v_{j+1}-v_{j}$. The space \mathcal{P}_{n} is canonically isomorphic to the complex projective space $P(H)$ where $H \subset \mathbb{C}^{n}$ is the hyperplane given by

$$
H=\left\{\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{C}^{n}: e_{1}+\ldots .+e_{n}=0\right\}
$$

Therefore, the space \mathcal{P}_{n} can be identified with $\mathbb{C} P^{n-2}$. The length of the edge e_{j} will be denoted by r_{j}. We shall assume that all polygons are normalized so that the perimeter is equal to 1 .

[^0]
[^0]: Originally published in Volume 42, Number 1 without the figures. For the convenience of the reader, it is reprinted here with the figures.

