PINCHING BELOW $\frac{1}{4}$, INJECTIVITY RADIUS, AND CONJUGATE RADIUS

UWE ABRESCH & WOLFGANG T. MEYER

Dedicated to S. S. Chern and W. Klingenberg

ABSTRACT. The injectivity radius of any simply connected, even dimensional Riemannian manifold M^n with positive sectional curvature equals its conjugate radius. So far the corresponding result in odd dimensions has only been known under the additional hypothesis that M^n is weakly $\frac{1}{4}$ -pinched. Moreover, some famous examples due to M. Berger show that the statement is even false, unless M^n is at least $\frac{1}{9}$ -pinched. It has been a longstanding problem whether the pinching constant can be pushed below $\frac{1}{4}$ for odd dimensional manifolds or not. In this paper we prove that this is indeed possible. The pinching constant $\delta \in [\frac{1}{9}, \frac{1}{4})$ that is needed in our main theorem does not depend on the dimension. As an application we obtain a sphere theorem for simply connected, odd dimensional, δ_n -pinched manifolds where the pinching constant δ_n is strictly less than $\frac{1}{4}$ and up to now still depends on the dimension.

1. Introduction

By the Theorem of Bonnet and Myers any complete Riemannian manifold (M^n, g) with sectional curvature $K_M \ge \lambda^2 > 0$ is compact. Its injectivity radius inj M^n is bounded from above by its conjugate radius ρ_c . If M^n is even dimensional and simply connected, equality holds. This has been shown by Klingenberg [16] using Synge's Lemma in combination with a lifting argument:

(1)
$$\operatorname{inj} M^n = \varrho_c \geq \pi / \sqrt{\max K_M}.$$

We are going to concentrate on the *odd dimensional case* which is much more subtle.

By the Long Homotopy Lemma in Klingenberg's proof of the Sphere Theorem [17], the injectivity radius and the conjugate radius are still equal, provided that M^n is simply connected and $\frac{1}{4} \max K_M < \min K_M$. This

Received February 7, 1994.

This work has been partially supported by the European Community under GADGET, contract number SC1-0039-C (AM). Both authors want to thank MSRI for additional support and hospitality during the fall of 1993.