# CONVEX DECOMPOSITIONS OF REAL PROJECTIVE SURFACES II: ADMISSIBLE DECOMPOSITIONS 

SUHYOUNG CHOI<br>Dedicated to the memory of Professor D. S. Rim


#### Abstract

A real projective surface is a differentiable surface with an atlas of charts to real projective plane $\mathbf{R P}^{2}$ such that transition functions are restrictions of projective automorphisms of $\mathbf{R P}^{2}$. Let $\Sigma$ be an orientable compact real projective surface with convex boundary and negative Euler characteristic. Then $\Sigma$ uniquely decomposes along mutually disjoint imbedded closed projective geodesics into compact subsurfaces that are maximal annuli, trivial annuli, or maximal purely convex real projective surfaces. This is a positive answer to a question by Thurston and Goldman raised around 1977.


We assume that surfaces in this paper are orientable always. Let $S$ be a real projective surface with convex boundary. We say that $S$ is the sum of subsurfaces $S_{1}, \cdots, S_{n}$ if $S$ is the union of $S_{1}, \cdots, S_{n}$, and if $S_{i} \cap S_{j}$ is the union of imbedded closed geodesics disjoint from one another or the empty set whenever $i$ and $j$ are integers satisfying $1 \leq i<j \leq n$ (compare with $\S 3.1$ of [14]). If $S$ is the sum of $S_{1}, \cdots, S_{n}$, then we say that $S$ decomposes into $S_{1}, \cdots, S_{n}$ (along closed geodesics) and that $\left\{S_{1}, \cdots, S_{n}\right\}$ is a decomposition collection of $S$. (See Appendix B of [16], and [26] for examples of this summation process.) This definition is slightly different from the one by Goldman [14] since we do not have the principal boundary conditions.

Let $D$ be an arbitrary compact simply convex domain in a 2-dimensional sphere $S^{2}$ such that there is a segment $\alpha$ and a compact smooth arc $\beta$ with two common endpoints $p$ and $q$ such that the boundary of $D$ $\delta D$ is $\alpha \cup \beta$. The quotient projective surface of $D-\{p, q\}$ by a properly discontinuous and free action of $\langle\vartheta\rangle$ for a hyperbolic or quasi-hyperbolic projective automorphism $\vartheta$ is called a primitive trivial annulus. (See [5]

[^0]
[^0]:    Received August 24, 1989 and, in revised form, June 11, 1993. Research partially supported by TGRC-KOSEF, 1991-1993. This paper is a revised version of a part of the author's thesis.

