CONVEX DECOMPOSITIONS OF REAL PROJECTIVE SURFACES. I: π -ANNULI AND CONVEXITY

SUHYOUNG CHOI

Dedicated to the memory of Sookja Lee

Abstract

A real projective surface is a surface with a flat real projective structure. A π -annulus is an easy-to-construct real projective annulus with geodesic boundary. Let Σ be an orientable compact real projective surface with convex boundary and negative Euler characteristic. We prove that there is a π -annulus with a projective map to Σ whenever Σ is not convex.

The real projective plane \mathbb{RP}^2 is the quotient space of $\mathbb{R}^3 - \{O\}$ for the origin O under the equivalence relation determined by

 $\mathbf{x} \sim \mathbf{y}$ if and only if $\mathbf{x} = s\mathbf{y}$,

where $s \in \mathbf{R} - \{0\}$ and $\mathbf{x}, \mathbf{y} \in \mathbf{R}^3$. The action of the general linear group $GL(3, \mathbf{R})$ induces a transitive action of the projective general linear group $PGL(3, \mathbf{R})$ on \mathbf{RP}^2 . Felix Klein's Erlangen program states that real projective geometry is the study of properties of \mathbf{RP}^2 invariant under the action of $PGL(3, \mathbf{R})$ (Goldman [10]). Given a differentiable surface, an atlas of charts to \mathbf{RP}^2 such that transition functions are restrictions of elements of $PGL(3, \mathbf{R})$ induces real projective geometric properties locally and consistently on the surface from \mathbf{RP}^2 . A maximal element of the collection of such atlases is said to be a *real projective structure*. (We omit the word real from the words real projective from now on since the projective structures that we work with are real projective structures.) A differentiable surface with a projective structure is said to be a *projective surface*, and an immersion from a projective surface to projective surface preserving projective structures is said to be a *projective* map. Let \mathbf{RP}^2 have the obvious projective structure (with a single coordinate chart). $PGL(3, \mathbf{R})$ consists of projective automorphisms of \mathbf{RP}^2 . The standard unit sphere

Received August 24, 1989 and, in revised form, November 5, 1993. Research was partially supported by the Department of Mathematics of the University of Illinois, Urbana-Champaign, and TGRC-KOSEF 1991–1993.