IRREDUCIBILITY OF MODULI OF RANK-2 VECTOR BUNDLES ON ALGEBRAIC SURFACES

DAVID GIESEKER \& JUN LI

Let X be a smooth algebraic surface over \mathbb{C}, let I be a fixed line bundle on X, and let H be a very ample line bundle on X. We recall that a sheaf E is H-stable (resp. H-semistable) if it is coherent, torsion free and so that for any proper subsheaf $F \subset E$, we have $p_{F} \prec p_{E}$ (resp. $\left.p_{F} \preceq p_{E}\right)$, where $p_{E}=(1 / \operatorname{rank} E) \chi_{E}$ and $\chi_{E}(n)=\chi\left(E \otimes H^{\otimes n}\right)$. Here by $p_{F} \prec p_{E}$ we mean $p_{F}(n)<p_{E}(n)$ for all sufficiently large n. There is a coarse moduli space $\mathfrak{M}_{X}^{d, I}$ parameterizing all rank $2 H$-semistable sheaves E with $\operatorname{det} E=I$ and $c_{2}(E)=d$ (modulo a certain equivalence). $\mathfrak{M}_{X}^{d, I}$ is a projective scheme [8]. For small $d, \mathfrak{M}_{X}^{d, I}$ can have rather wild behavior, e.g., the dimension of $\mathfrak{M}_{X}^{d, I}$ may be larger than expected [9]. However, S. Donaldson [4], later generalized by R. Friedman [6] and K. Zhu [34] showed that for large d, every component of $\mathfrak{M}_{X}^{d, I}$ is reduced and has the expected dimension. $\mathfrak{M}_{X}^{d, I}$ is also normal [20] for $d \gg 0$.

Our purposes of this paper is twofold. The first is to develop a method of studying $\mathfrak{M}_{X}^{d, I}$ by degeneration. The second is to use this method to prove

Main Theorem. Let X be any smooth algebraic surface over \mathbb{C}, and I be a fixed ample divisor. Then there is a constant A depending on (X, H, I) such that whenever $d \geq A$, then $\mathfrak{M}_{X}^{d, I}$ is irreducible.

The proof of the theorem is based on the following well-known observation: Let A be large so that for $d \geq A, \mathfrak{M}_{X}^{d, I}$ is smooth at a dense subset. Take $\mathbf{M} \subseteq \mathfrak{M}_{X}^{d, I}$ be any irreducible component and take $E \in \mathbf{M}$ be a smooth point. Let \mathbb{C}_{x} be the skyscraper sheaf over $x \in X$ and let $E \rightarrow \mathbb{C}_{x}$ be a general surjective homomorphism. The kernel E^{\prime} of $E \rightarrow \mathbb{C}_{x}$ is a stable sheaf with $c_{2}\left(E^{\prime}\right)=d+1$ and $\operatorname{Ext}^{2}\left(E^{\prime}, E^{\prime}\right)^{0}=\{0\}$. Thus E^{\prime} belongs to a unique irreducible component of $\mathfrak{M}_{X}^{d+1, I}$. Now if we let $\Lambda(d)$ be the set of irreducible components of $\mathfrak{M}_{X}^{d, I}$, then this construction

[^0]
[^0]: Received August 31, 1992 and, in revised form, July 23, 1993. This work is partially supported by NSF grant DMS89-04922.

