THIN POSITION AND HEEGAARD SPLITTINGS OF THE 3-SPHERE

MARTIN SCHARLEMANN \& ABIGAIL THOMPSON

We present here a simplified proof of the theorem, originally due to Waldhausen [7], that a Heegaard splitting of S^{3} is determined solely by its genus. The proof combines Gabai's powerful idea of "thin position" [2] with Johannson's [4] elementary proof of Haken's theorem [3] (Heegaard splittings of reducible 3-manifolds are reducible). In §3.1, $3.2 \& 3.8$ we borrow from Otal [6] the idea of viewing the Heegaard splitting as a graph in 3-space in which we seek an unknotted cycle.

Along the way we show also that Heegaard splittings of boundary reducible 3-manifolds are boundary reducible [1, 1.2], obtain some (apparently new) characterizations of graphs in 3-space with boundary-reducible complement, and recapture a critical lemma of [5]. We are indebted to Erhard Luft for pointing out a gap in the original argument.

1. Heegaard splittings: a brief review

1.1. All surfaces and 3 -manifolds will be compact and orientable. A compression body H is constructed by adding 2-handles to a (surface) \times 1 along a collection of disjoint simple closed curves on (surface) $\times\{0\}$, and capping off any resulting 2 -sphere boundary components with 3 -balls. The component (surface) $\times\{1\}$ of ∂H is denoted $\partial_{+} H$ and the surface $\partial H-\partial_{+} H$, which may or may not be connected, is denoted $\partial_{-} H$ (Figure 1a, next page). If $\partial_{-} H=\varnothing$, then H is a handlebody. If $H=\partial_{+} H \times 1, H$ is called a trivial compression body. A spine for H is a properly imbedded 1-complex Q such that H collapses to $Q \cup \partial_{-} H$ (Figure 1b).
1.2. Spines are not unique, but can be altered by edge slides, as follows: Choose an edge e in Q and let \bar{Q} be the graph $Q-e$. Let \bar{H} denote a regular neighborhood of $\partial_{-} H \cup \bar{Q}$. Then H is the union of \bar{H} and a 1 -handle h attached to $\partial_{+} \bar{H}$. The core of h is the edge e, with its ends

[^0]
[^0]: Received January 15, 1993. Authors are supported in part by a National Science Foundation grant. The second author is a Sloan Foundation Fellow.

