LOCAL PROPERTIES OF FAMILIES OF PLANE CURVES

ROBERT TREGER

Introduction

Let \mathbf{P}^N be the projective space parametrizing all projective plane curves of degree n (N = n(n+3)/2). For $d \ge 1$, we let $\sum_{n,d} \subset \mathbf{P}^N \times \operatorname{Sym}^d(\mathbf{P}^2)$ be the closure of the locus of pairs $(E, \sum_{i=1}^d P_i)$, where E is an irreducible nodal curve and P_1, \dots, P_d are its nodes. The purpose of this paper is to prove the following theorem.

Theorem. The variety $\Sigma_{n,d}$ is unibranch everywhere.

The variety $\sum_{n,d}$ plays an important role in the study of the family of irreducible plane curves of degree n with d nodes and no other singularities as well as the locus $V(n, g) \subset \mathbf{P}^N$ of reduced and irreducible curves of genus g, where g = (n-1)(n-2)/2 - d. We mention two corollaries.

Corollary 1 (Harris [5]). The variety $\overline{V(n,g)} \subset \mathbf{P}^N$ is irreducible.

Corollary 2. The locus V(n, g) is unibranch everywhere.

It is well known that $\overline{V(n, g)}$ is not unibranch everywhere [3], [5, §1], [6, Lecture 3], [10, §11]. We now prove the corollaries. Recall a result of Arbarello and Cornalba [1] and Zariski [13]: the general members of V(n, g) have d = (n-1)(n-2)/2 - g nodes and no other singularities. It follows that the projection of $\Sigma_{n,d}$ to \mathbf{P}^N coincides with $\overline{V(n, g)}$. Every component of $\Sigma_{n,d}$ contains a pair of the form $(\Sigma_{r=1}^n L_r, dP)$, where the lines L_r $(1 \le r \le n)$ meet only at P, and by the deformation theory, $\Sigma_{n,d}$ contains all such pairs [6, Lecture 3, §2], [10, §11]. It is clear that these pairs form an irreducible family. Hence $\Sigma_{n,d}$ is irreducible by our theorem. It follows that $\overline{V(n, g)}$ is also irreducible.

We now prove Corollary 2. Let C be an arbitrary member of V(n, g). For a point $P \in C$, we set $\delta_P = \dim_C \tilde{O}_P / O_P$, where O_P is the local ring of C at P, and \tilde{O}_P its normalization. By the genus formula, $\sum_{Q \in C} \delta_Q = d$ [7, Theorem 2]. Therefore if a nodal member of V(n, g) specializes to C, then exactly δ_P of its nodes specialize to $P \in C$ [12, §3.4]. Hence C

Received January 16, 1990, and, in revised form, April 10, 1992.