LINEAR HOLONOMY OF MARGULIS SPACE-TIMES

TODD A. DRUMM

To Aimee, with love

1. Introduction: Free discrete groups

If $\Gamma \subset \operatorname{Aff}(\mathfrak{R}^3)$ acts properly discontinuously on \mathfrak{R}^3 , then Γ is either solvable or free up to finite index [3], [6]. If Γ is free and acts properly discontinuously on \mathfrak{R}^3 , then Γ is conjugate to a subgroup of $\mathbf{H} = \mathbf{O}(2, 1) \ltimes \mathbf{V}$, where \mathbf{V} is the group of parallel translations in $\mathbf{E} = \mathfrak{R}^{2,1}$ [3]. Let $\mathbf{G} = \operatorname{SO}(2, 1)$ and let \mathbf{G}^o denote its identity component.

Complete affinely flat manifolds correspond to $\Gamma \subset Aff(\Re^3)$ which act properly discontinuously and freely on E. Define *Margulis space-times* as complete affinely flat 3-dimensional manifolds with free fundamental group; their existence was demonstrated by Margulis [4], [5].

Let L: Aff(\mathfrak{R}^3) \rightarrow GL(n, \mathfrak{R}) be the usual projection. If Γ acts properly discontinuously on E, then $L(\Gamma)$ is conjugate to a free discrete group of G; it was shown in [2].

Theorem 1. For every Schottky group $G \subset \mathbf{G}^o$ there exists a free $\Gamma \subset \mathbf{H}$ which acts properly discontinuously on \mathbf{E} and $L(\Gamma) = G$.

 $G \subset \mathbf{G}^{o}$ is a Schottky group if and only if all nonidentity elements are hyperbolic. The set of all Schottky groups in \mathbf{G}^{o} is a proper subset of the set of all free discrete subgroups of \mathbf{G}^{o} . In particular, there are free discrete subgroups of \mathbf{G}^{o} , which contain parabolic elements.

We shall prove

Theorem 2. $G = L(\Gamma)$ for some free finitely generated $\Gamma \subset Aff(\mathfrak{R}^3)$ which acts properly discontinuously on **E** if and only if G is conjugate to a free finitely generated discrete subgroups of **G**.

For the affine manifold \mathbf{M} , the group of deck transformations Π acts on the universal cover $\widetilde{\mathbf{M}}$ by affine automorphisms. The developing map $D: \widetilde{\mathbf{M}} \to \mathbf{E}$ is a homeomorphism for complete \mathbf{M} . For every $\tau \in \Pi$ there

Received September 17, 1991, and, in revised form, December 3, 1992. The author gratefully acknowledges partial support from a National Science Foundation Postdoctoral Fellowship administered by the Mathematical Sciences Research Institute.